催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2057-2090.DOI: 10.1016/S1872-2067(21)64030-5
收稿日期:
2021-12-25
接受日期:
2022-01-28
出版日期:
2022-08-18
发布日期:
2022-06-20
通讯作者:
管景奇
基金资助:
Received:
2021-12-25
Accepted:
2022-01-28
Online:
2022-08-18
Published:
2022-06-20
Contact:
Jingqi Guan
Supported by:
摘要:
化石能源过度消耗导致的环境污染问题使发展绿色可持续替代能源成为人们需要面对的重要问题. 寻找绿色高效的方法生产可再生燃料是一个有效的策略, 在减少二氧化碳排放的同时可满足能源需求. 电催化是一种实现清洁能源的重要途径, 可将地球上含量丰富的H2O, N2, CO2和O2等转化为燃料和化合物. 尽管贵金属Pt, RuO2等具有优异的电催化性能, 但由于成本高、储量少限制了其大规模应用, 因此开发一种高活性且低成本的电催化剂是实现大规模应用的关键. 由于具有独特的形貌和电子结构, 石墨烯, 黑磷和二硫化钼等二维材料已经在电催化领域得到了广泛应用. 作为一种新型的二维材料, 碳化物、氮化物和碳氮化物(MXenes)不仅具有良好的机械性能和大比表面积, 其较好的导电性和基底面上丰富的活性位点在促进可持续能源发展方面发挥了更重要的作用. 自MXenes首次被用于析氢反应(HER)以来, 大量的工作预测并合成了具有多种元素的MXenes及其复合材料, 并用于电催化反应.
本文从理论和实验两方面综述了基于MXenes在HER、析氧反应(OER)和氧还原反应(ORR)方面的研究进展, 包括对原始MXenes的结构形态调控和对杂化MXenes的修饰. 简要介绍了MXenes的蚀刻合成法(氢氟酸蚀刻、熔融盐蚀刻和电化学蚀刻等), 提出了设计MXene基电催化剂的基本原则(提高稳定性、导电性和固有活性)并将其电催化性能与M, X, T和空位以及形貌的关系进行了总结. 对于HER, 原始MXene表面的氧官能团是活性位点, 通过调节M, X和空位的类型可以调节表面氧原子的电子结构, 从而使氢吸附吉布斯自由能趋于零, 提高MXene的固有活性. 对于OER和ORR, 原始MXene不具备固有催化活性, 然而某些金属(Pt, Ru等)在T位上以单原子形式掺杂从而形成的MXene基单原子催化剂表现出良好的催化性能. 在总结了原子取代、功能修饰、缺陷工程和形貌控制等方面的研究策略后, 重点讨论了MXenes与金属纳米颗粒、氧化物、氢氧化物、硫化物、磷化物等其他纳米结构异质结的构建. 最后提出了MXenes目前面临的问题和挑战, 并展望了其在电催化领域的应用前景.
白雪, 管景奇. 过渡金属碳氮化物在电催化领域的应用: 改性和杂化[J]. 催化学报, 2022, 43(8): 2057-2090.
Xue Bai, Jingqi Guan. MXenes for electrocatalysis applications: Modification and hybridization[J]. Chinese Journal of Catalysis, 2022, 43(8): 2057-2090.
Fig. 2. Theoretical calculational model of an MXene. Side (a) and top (b) views of a pristine MXene; Side views of T-doped (c), M-doped (d), and X-doped (e) MXenes; Side views of VT-MXene (f), VM-MXene (g); and VX-MXene (h).
Fig. 3. (a) Schematic diagram of the HER mechanism. (b) Top view of the structure of bare MXene with different adsorption sites. (c) HER volcano plot; (d) Enlargement of the top of the volcano. (a?d) Reprinted with permission from Ref. [26]. Copyright 2016, American Chemical Society. (e) ΔGH* under standard conditions at USHE = 0 V. (f) Band structures at each nitrogen-doping concentration. Each green solid line corresponds to the conduction band. (e,f) Reprinted with permission from Ref. [57]. Copyright 2021, American Chemical Society.
Fig. 5. Calculated stress-strain curves of 2D Ti2C (a) and 2D Ti2CO2 (c). (b) Variations in the bond lengths (Ti-C) and out-of-plane heights of Ti atoms. (d) Variations in the out-of-plane heights of Ti atoms and O atoms. Reprinted with permission from Ref. [76]. Copyright 2016, American Physical Society.
Fig. 6. (a) Schematic diagram showing the formation of an MXene by fluoride etching. Reprinted with permission from Ref. [88]. Copyright 2020, Elsevier. (b) Fluoride-free electro-etching equipment with a dual electrode system. Reprinted with permission from Ref. [95]. Copyright 2018, Wiley-VCH. (c) Schematic diagram showing the mechanism for the synthesis of an MXene in a Lewis-acid molten salt. Reprinted with permission from Ref. [97]. Copyright 2019, American Chemical Society. (d) Schematic diagram of the device used to react Ti3AlC2 in an aqueous NaOH solution. Reprinted with permission from Ref. [100]. Copyright 2018, Wiley-VCH.
Fig. 7. MXene synthesis and increased interlayer spacing by Na+ intercalation. Reprinted with permission from Ref. [108]. Copyright 2015, Macmillan Publishers Limited.
Fig. 8. Feedback mode (a,c,e) and corresponding SG-TC mode (b,d,f) SECM images of three V-Ti4N3Tx samples. Reprinted with permission from Ref. [116]. Copyright 2020, WILEY-VCH. (g) In-situ Raman spectra of NiCo2O4/MXene at various applied potentials. Reprinted with permission from Ref. [118]. Copyright 2020, American Chemical Society.
Fig. 9. (a) Structure diagram for BP@MXene; Normalized Ti K-edge XANES spectra (b) and k3-weighted Fourier-transformed Ti K-edge XANES spectra (c). Reprinted with permission from Ref. [122]. Copyright 2021, American Chemical Society.
Fig. 10. LSV (a) and Tafel plots (b) of various Ti3C2Tx systems. (a,b) Reprinted with permission from Ref. [129]. Copyright 2017, American Chemical Society. (c) Optimized structures of selected MXenes. The distances between the terminators and the first Ti layer are also shown. Reprinted with permission from Ref. [133]. Copyright 2018, American Chemical Society.
Fig. 11. (a) Model of the Mo2CTx:Co structure; LSV curves (b) and Tafel plots (c). (a?c) Reprinted with permission from Ref. [137]. Copyright 2019, American Chemical Society. (d) Top and side views of transition metal carbonitride models; Values of ΔGH on the C-sides (e) and N-sides (f) of MXenes. Reprinted with permission from Ref. [139]. Copyright 2018, Wiley-VCH.
Fig. 12. (a-e) HAADF-STEM images of defects in single-layer Ti3C2Tx. (f) VTi formation energies on bare Ti3C2 and terminated single-layer Ti3C2Tx; (g) Formation energy of VTiC clusters as a function of the VTi number. Reproduced with permission [140]. Copyright 2016 American Chemical Society.
Fig. 13. (a) AFM image of TBA-Ti3C2Tx. (b) Ar adsorption and desorption isotherms. Reprinted with permission from Ref. [111] Copyright 2019, American Chemical Society. (c) Depicting the merits of a 3D MXene. SEM images of 3D Ti3C2 (d), pristine Ti3C2 MXene after being compressed (e), and vacuum filtered Ti3C2 MXene (f). The insets show images of materials dispersed in water after ultrasonication. Reprinted with permission from Ref. [146]. Copyright 2018, American Chemical Society.
Fig. 14. (a) Degradation of Ti3C2Tx in various environments. (b) MXene oxidation mechanisms at various pH values. Three methods for improving the structure and activity of an MXene: (c) layer-spacing expansion; (d) stereo-model assembly; (e) active-phase decoration.
Fig. 15. Syntheses of SA-Cu-MXene (a), RuSA-N-S-Ti3C2Tx (b), and Cu-SA/Ti3C2Tx (c). (a) Reprinted with permission from Ref. [36]. Copyright 2021, American Chemical Society. (b) Reprinted with permission from Ref. [165]. Copyright 2019, Wiley-VCH. (c) Reprinted with permission from Ref. [167]. Copyright 2021, Macmillan Publishers Limited.
Fig. 16. (a) Four different oxygen vacancy sites and four different neighboring adsorption sites for the 4 × 4 supercell structure. (b) Theoretical calculational results for six pairs of metal atoms adsorbed onto the eight DAC sites in (a). (c,d) Calculated Gibbs free energy differences (ΔG) for the elem entary reaction steps along OER and ORR pathways. Reprinted with permission from Ref. [169]. Copyright 2021, Wiley-VCH GmbH.
Fig. 17. DFT calculational system. (a) Structure of an OBA and possible oxygen adsorption sites. (b) Promising OBA HER catalysts. Reprinted with permission from Ref. [176]. Copyright The Royal Society of Chemistry 2020.
Fig. 18. (a) Synthesis of a N-doped MXene. Reprinted with permission from Ref. [180]. Copyright 2019, American Chemical Society. (b,c) Deconvoluted XPS spectra of N-MXene-T; LSV traces (d) and Tafel slopes (e) of N-MXene-T. Reprinted with permission from Ref. [182]. Copyright 2020, Elsevier.
Fig. 19. (a) Synthesis of Nb1.33CTx; HRTEM image (b) and the top-view schematic (c) of Nb1.33CTx. Reprinted with permission from Ref. [191]. Copyright 2018, American Chemical Society. (d-f) Formation of defects in Ti3CNTx. (g) Three types of N active site; N 1s XPS spectra of Ti3AlCN (h) and Ti3CNTx (i). Reprinted with permission from Ref. [192]. Copyright 2021, Elsevier. (j,k) Modulating the HER performance of V2CO2 by introducing a transition metal onto the surface. Reprinted with permission from Ref. [194]. Copyright 2016, WILEY-VCH.
Fig. 20. Syntheses of VO-Nb2O5/Nb2C (a), VS-CdS/Ti3C2 (b), o-P-CoTe2/MXene (c), and MoxS@TiO2@Ti3C2 (d). (a) Reprinted with permission from Ref. [199]. Copyright 2020, Elsevier. (b) Reprinted with permission from Ref. [200]. Copyright 2021, Elsevier. (c) Reprinted with permission from Ref. [201]. Copyright 2021, Wiley-VCH. (d) Reprinted with permission from Ref. [203]. Copyright 2019, Elsevier.
Fig. 21. (a) Synthesis of Ti3C2 NFs; High-magnification SEM (b) and TEM (c) images of Ti3C2 NFs. Reprinted with permission from Ref. [207]. Copyright 2018, American Chemical Society. (d) Synthesis of a multilevel hollow MXene tailored low-Pt catalyst; SEM images (e,f), TEM image (g) and HRTEM image (h) of the mh-3D MXene with a honeycomb surface. Reprinted with permission from Ref. [209]. Copyright 2020, Wiley-VCH.
Modification strategy | Catalyst | Electrolyte | Application | η10 (mV) | Tafel slope (mV dec-1) | Ref. | |
---|---|---|---|---|---|---|---|
Surface modification | Mo2CTx | 0.5 mol/L H2SO4 | HER | 189 | 75 | [ | |
E-Ti3C2Ox | 0.5 mol/L H2SO4 | HER | 190 | 60.7 | [ | ||
E-Ti3C2(OH)x | 0.5 mol/L H2SO4 | HER | 217 | 88.5 | |||
E-Ti3C2Tx-450 | 0.5 mol/L H2SO4 | HER | 266 | 109.8 | |||
Ti2CTx nanosheets | 0.5 mol/L H2SO4 | HER | 170 | 100 | [ | ||
I-Na-Ti3C2Tx/MoS2 | 0.5 mol/L H2SO4 | HER | 139 | 78 | [ | ||
P-Mo2CTx | 0.5 mol/L H2SO4 | HER | 186 | — | [ | ||
Ti3C2Tx:Co-12h | 1 mol/L KOH | HER | 103.6 | 104.42 | [ | ||
Ru-SA/Ti3C2Tx | 0.1 mol/L HClO4 | HER | 70 | 27.7 | [ | ||
0.1 mol/L HClO4 | OER | 290 | 37.9 | ||||
0.1 mol/L HClO4 | ORR | 0.82 (E1/2/V) | 60.4 | ||||
Lattice substitution | Mo2TiC2Tx | 0.5 mol/L H2SO4 | HER | 248 | 74 | [ | |
Mo2Ti2C3Tx | 0.5 mol/L H2SO4 | HER | 275 | 99 | |||
RuSA-N-Ti3C2Tx | 0.5 mol/L H2SO4 | HER | 23 | 42 | [ | ||
1 mol/L KOH | HER | 28 | 29 | ||||
RuSA-N-S-Ti3C2Tx | 0.5 mol/L H2SO4 | HER | 76 | 90 | [ | ||
Mo2CTx:Co | 1 mol/L H2SO4 | HER | 180 | 59 | [ | ||
Ni0.9Co0.1@NTM | 1 mol/L KOH | HER | 43.4 | 116 | [ | ||
N-Ti3C2Tx@600 | 0.5 mol/L H2SO4 | HER | 198 | 92 | [ | ||
N-MXene-35 | 0.5 mol/L H2SO4 | HER | 162 | 69 | [ | ||
P3-V2CTx | 0.5 mol/L H2SO4 | HER | 163 | 74 | [ | ||
Ti3C1.6N0.4 | 1 mol/L KOH | OER | — | 216.4 | [ | ||
Defect engineering | Ti3C2Tx-N6 | 1 mol/L KOH | HER | 119.17 | 61.81 | [ | |
OER | 360 | 76.68 | |||||
D-Mo2TiC2/Ni | 0.1 mol/L H2SO4 | HER | 780 | 56.7 | [ | ||
Mo2TiC2O2-VMo | 0.5 mol/L H2SO4 | HER | — | 44 | [ | ||
Mo2TiC2O2-PtSA | 0.5 mol/L H2SO4 | HER | 30 | 30 | |||
Morphology control | CoP@3D Ti3C2-MXene | 1 mol/L KOH | HER | 168 | 58 | [ | |
3D MX (35%)/NG | 0.5 mol/L H2SO4 | OER | 298 | 51 | [ | ||
Nb4C3Tx-180 | 1 mol/L KOH | HER | 398 | 122.2 | [ | ||
Ti3C2 NFs | 0.5 mol/L H2SO4 | HER | 169 | 97 | [ | ||
MoS2/Ti3C2Tx | 0.5 mol/L H2SO4 | HER | 152 | 70 | [ | ||
W2C@WS2 nanoflowers | 0.5 mol/L H2SO4 | HER | 320 | 55.4 | [ | ||
Pt@mh-3D MXene | 1 mol/L KOH | HER | 27 | 42 | [ |
Table 1 MXenes modified using different strategies for use in the HER/OER.
Modification strategy | Catalyst | Electrolyte | Application | η10 (mV) | Tafel slope (mV dec-1) | Ref. | |
---|---|---|---|---|---|---|---|
Surface modification | Mo2CTx | 0.5 mol/L H2SO4 | HER | 189 | 75 | [ | |
E-Ti3C2Ox | 0.5 mol/L H2SO4 | HER | 190 | 60.7 | [ | ||
E-Ti3C2(OH)x | 0.5 mol/L H2SO4 | HER | 217 | 88.5 | |||
E-Ti3C2Tx-450 | 0.5 mol/L H2SO4 | HER | 266 | 109.8 | |||
Ti2CTx nanosheets | 0.5 mol/L H2SO4 | HER | 170 | 100 | [ | ||
I-Na-Ti3C2Tx/MoS2 | 0.5 mol/L H2SO4 | HER | 139 | 78 | [ | ||
P-Mo2CTx | 0.5 mol/L H2SO4 | HER | 186 | — | [ | ||
Ti3C2Tx:Co-12h | 1 mol/L KOH | HER | 103.6 | 104.42 | [ | ||
Ru-SA/Ti3C2Tx | 0.1 mol/L HClO4 | HER | 70 | 27.7 | [ | ||
0.1 mol/L HClO4 | OER | 290 | 37.9 | ||||
0.1 mol/L HClO4 | ORR | 0.82 (E1/2/V) | 60.4 | ||||
Lattice substitution | Mo2TiC2Tx | 0.5 mol/L H2SO4 | HER | 248 | 74 | [ | |
Mo2Ti2C3Tx | 0.5 mol/L H2SO4 | HER | 275 | 99 | |||
RuSA-N-Ti3C2Tx | 0.5 mol/L H2SO4 | HER | 23 | 42 | [ | ||
1 mol/L KOH | HER | 28 | 29 | ||||
RuSA-N-S-Ti3C2Tx | 0.5 mol/L H2SO4 | HER | 76 | 90 | [ | ||
Mo2CTx:Co | 1 mol/L H2SO4 | HER | 180 | 59 | [ | ||
Ni0.9Co0.1@NTM | 1 mol/L KOH | HER | 43.4 | 116 | [ | ||
N-Ti3C2Tx@600 | 0.5 mol/L H2SO4 | HER | 198 | 92 | [ | ||
N-MXene-35 | 0.5 mol/L H2SO4 | HER | 162 | 69 | [ | ||
P3-V2CTx | 0.5 mol/L H2SO4 | HER | 163 | 74 | [ | ||
Ti3C1.6N0.4 | 1 mol/L KOH | OER | — | 216.4 | [ | ||
Defect engineering | Ti3C2Tx-N6 | 1 mol/L KOH | HER | 119.17 | 61.81 | [ | |
OER | 360 | 76.68 | |||||
D-Mo2TiC2/Ni | 0.1 mol/L H2SO4 | HER | 780 | 56.7 | [ | ||
Mo2TiC2O2-VMo | 0.5 mol/L H2SO4 | HER | — | 44 | [ | ||
Mo2TiC2O2-PtSA | 0.5 mol/L H2SO4 | HER | 30 | 30 | |||
Morphology control | CoP@3D Ti3C2-MXene | 1 mol/L KOH | HER | 168 | 58 | [ | |
3D MX (35%)/NG | 0.5 mol/L H2SO4 | OER | 298 | 51 | [ | ||
Nb4C3Tx-180 | 1 mol/L KOH | HER | 398 | 122.2 | [ | ||
Ti3C2 NFs | 0.5 mol/L H2SO4 | HER | 169 | 97 | [ | ||
MoS2/Ti3C2Tx | 0.5 mol/L H2SO4 | HER | 152 | 70 | [ | ||
W2C@WS2 nanoflowers | 0.5 mol/L H2SO4 | HER | 320 | 55.4 | [ | ||
Pt@mh-3D MXene | 1 mol/L KOH | HER | 27 | 42 | [ |
Fig. 23. (a) HAADF-STEM image of used Pt/Ti3C2Tx-550. (b) DFT calculations. (c) HER polarization curves and (d) a magnification of the 0?10 mA region. (e) Mass activity and (f) specific activity of catalysts. (g) Tafel curves. (h) Nyquist plots of Pt/Ti3C2Tx. Reprinted with permission from Ref. [85]. Copyright 2019, American Chemical Society.
Fig. 24. (a) Polarization curves. (b) A comparison of the catalysts in onset potential and overpotential at j = 10 mA cm-2. (c) Tafel plots. (d) time-dependent current density curves at η = 130 mV for MoS2/Ti3C2-MXene@C catalyst. (e) Polarization curves after continuous potential sweeps of 2000 cycles. (f) EIS spectra at η = 100 mV. Reprinted with permission from Ref. [236]. Copyright 2017, Wiley-VCH. (g) Schematic diagram of the MoS2-Ti3C2 compound. (h) Single-layer polymorph mode of MoS2. (i,k) HRTEM images of the top profile of MoS2-Ti3C2. (j,l) HRTEM images of epitaxial MoS2 flakes in MoS2-Ti3C2. Reprinted with permission from Ref. [115]. Copyright 2021, Elsevier.
Fig. 25. (a) Synthesis of NFPS@MXene. Reprinted with permission from Ref. [250]. Copyright 2018, WILEY-VCH. (b) Schematic depicting the oxidation of the metal center and the anionic components with subsequent deposition. (c) Dissolved concentrations of Co, P and Se in the electrolyte after the OER. (d) P and Se contents of catalysts before and after the OER. Reprinted with permission from Ref. [120]. Copyright 2019, The Royal Society of Chemistry.
Fig. 26. (a) Structural models of CoxMo2-xC/NG and Mo2C/NG. (C: silver, N: blue, Mo: green, and Co: purple). DFT-calculated HER free energies (b) and reaction energies (d) for water dissociation on CoxMo2-xC/NG and Mo2C/NG; UPS (c) and FTIR-ATR spectra (e) of CoxMo2-xC/MXene/NC and Mo2C/MXene/NC. Reprinted with permission from Ref. [263]. Copyright 2019, Wiley-VCH.
Fig. 27. (a) Synthesis of TiOF2@Ti3C2Tx. (b) Interfacial structure of TiOF2@Ti3C2Tx. Reprinted with permission from Ref. [273]. Copyright 2019, Elsevier. (c) Synthesis of PtOaPdObNPs@Ti3C2Tx. Reprinted with permission from Ref. [272]. Copyright 2018, American Chemical Society. (d) Synthesis of Mn3O4/MXene. Reprinted with permission from Ref. [274]. Copyright 2017, The Royal Society of Chemistry.
Fig. 28. Syntheses of CoFe-LDH/MXene (a), FeNi-LDH/Ti3C2-MXene (b), NiFeCe-LDH/MXene (c), and TTL (d). (a) Reprinted with permission from Ref. [280]. Copyright 2019, Elsevier. (b) Reprinted with permission from Ref. [127]. Copyright 2017, Elsevier. (c) Reprinted with permission from Ref. [279]. Copyright 2020, Science Press. (d) Reprinted with permission from Ref. [283]. Copyright 2018, The Royal Society of Chemistry.
Fig. 29. (a) Local densities of states of surface C atoms on freestanding N-doped graphene and that supported by a V2C monolayer. (b) The pz band center (top panel) and work function (bottom panel) as functions of the lowest binding energy of the OH* species for various graphene/MXene heterostructures (colored open circles) and for GN. (c) DOSs of the pz orbitals of O* species adsorbed on various graphene/MXene heterostructures and on GN. (d) Schematic diagram showing orbital hybridization between C and adsorbate atoms to form fully filled bonding (σ) and antibonding (σ*) orbitals. Reprinted with permission from Ref. [287]. Copyright 2018, The Royal Society of Chemistry. (e) Preparation of fabrication of MXene@Pt/SWCNTs. Reprinted with permission from Ref. [164]. Copyright 2020, WILEY-VCH.
Fig. 30. (a) Synthesis of BPQD/TNS. Reprinted with permission from Ref. [301]. Copyright 2018, WILEY-VCH. (b,c) HER and OER performance of BP QDs/MXene. (d) Computational models for BP, Ti3C2Tx and BP QDs/MXene. (e) Diagram showing calculated ΔG for the HER on various electrocatalysts. Sites 1 and 2 that correspond to the adsorption of H* above the BP QDs and near the interface are highlighted in red. Reprinted with permission from Ref. [235]. Copyright 2018, The Royal Society of Chemistry.
Catalyst | Electrolyte | η10 (mV) | Tafel slope (mV dec-1) | Ref. |
---|---|---|---|---|
Ru@B-Ti3C2Tx | 0.5 mol/L H2SO4 | 62.9 | 100 | [ |
Pt NCs-MXene | 0.5 mol/L H2SO4 | 40 | 50.8 | [ |
40Pt-TBA-Ti3C2Tx | 0.5 mol/L H2SO4 | 67.8 | 69.8 | [ |
TBA-Ti3C2Tx-Pt-20 | 0.5 mol/L H2SO4 | 55 | 65 | [ |
Pt/Ti3C2Tx-550 | 1 mol/L KOH | 32.7 | 32.3 | [ |
Ti3C2Tx@0.1Pt | 0.5 mol/L H2SO4 | 43 | 80 | [ |
P-Mo2C/Ti3C2@NC | 0.5 mol/L H2SO4 | 177 | 57.3 | [ |
MoS2/Ti3C2-MXene@C | 0.5 mol/L H2SO4 | 135 | 45 | [ |
Mo2CTx/2H-MoS2 | 0.5 mol/L H2SO4 | 119 | 60 | [ |
MoS2⊥Ti3C2@220 | 0.5 mol/L H2SO4 | 95 | 40 | [ |
MD-Ti3C2/MoSx-100 | 0.5 mol/L H2SO4 | 165 | 41 | [ |
MoS2-Ti3C2 | 0.5 mol/L H2SO4 | 98 | 45 | [ |
CoS2@MXene | 0.1 mol/L KOH | 175 | 97 | [ |
TiOF2@Ti3C2Tx | 0.5 mol/L H2SO4 | 103 | 56.2 | [ |
S-M-5Pt | 0.5 mol/L H2SO4 | 62 | 78 | [ |
PtOaPdObNPs@Ti3C2Tx | 0.5 mol/L H2SO4 | 26.5 | 39 | [ |
CoP/MXene | 1 mol/L KOH | 113 | 57 | [ |
CoP/Ti3C2 MXene | 0.5 mol/L H2SO4 | 71 | 57.6 | [ |
1 mol/L PBS | 124 | 96.8 | ||
1 mol/L KOH | 102 | 68.7 | ||
Ti3C2@mNiCoP | 1 mol/L KOH | 127 | 103 | [ |
Ti2NTx@MOF-CoP | 1 mol/L KOH | 112 | 67.1 | [ |
1 mol/L PBS | 131 | 125.6 | ||
0.5 mol/L H2SO4 | 129 | 96.7 | ||
Co0.31Mo1.69C/MXene/NC | 0.5 mol/L H2SO4 | 81 | 24 | [ |
0.1 mol/L PBS | 126 | 46 | ||
1 mol/L KOH | 75 | 32 | ||
P-TiO2@Ti3C2 | 1 mol/L KOH | 97 | 48.4 | [ |
MX@C | 1 mol/L KOH | 134 | 32 | [ |
NiS2/V-MXene | 1 mol/L KOH | 179 | 85 | [ |
Co-MoS2/Mo2CTx | 1 mol/L KOH | 112 | 82 | [ |
Ag@N-Ti3C2Tx | 1 mol/L KOH | 153 | 137.9 | [ |
Ni2P/Ti3C2Tx/NF | 1 mol/L KOH | 135 | 86.6 | [ |
3D CNTs@Ti3C2Tx | 1 mol/L KOH | 93 | 128 | [ |
1T/2H MoSe2/MXene | 1 mol/L KOH | 95 | 91 | [ |
NiSe2/Ti3C2Tx | 2 mol/L KOH | 200 | 37.7 | [ |
Ni0.7Fe0.3PS3@MXene | 1 mol/L KOH | 282 | 36.5 | [ |
VOOH/Ti3C2Tx | 1 mol/L KOH | 100 | 81.8 | [ |
NiFe-LDH/MXene/NF | 1 mol/L KOH | 132 | 70 | [ |
NiFe2O4/Ti3C2 | 0.5 mol/L KOH | 173 | 112.2 | [ |
Co-CoO/Ti3C2-MXene | 1 mol/L KOH | 45 | 47 | [ |
BP QDs/MXene | 1 mol/L KOH | 190 | 83 | [ |
Table 2 HER performance data for MXene-based hybrids.
Catalyst | Electrolyte | η10 (mV) | Tafel slope (mV dec-1) | Ref. |
---|---|---|---|---|
Ru@B-Ti3C2Tx | 0.5 mol/L H2SO4 | 62.9 | 100 | [ |
Pt NCs-MXene | 0.5 mol/L H2SO4 | 40 | 50.8 | [ |
40Pt-TBA-Ti3C2Tx | 0.5 mol/L H2SO4 | 67.8 | 69.8 | [ |
TBA-Ti3C2Tx-Pt-20 | 0.5 mol/L H2SO4 | 55 | 65 | [ |
Pt/Ti3C2Tx-550 | 1 mol/L KOH | 32.7 | 32.3 | [ |
Ti3C2Tx@0.1Pt | 0.5 mol/L H2SO4 | 43 | 80 | [ |
P-Mo2C/Ti3C2@NC | 0.5 mol/L H2SO4 | 177 | 57.3 | [ |
MoS2/Ti3C2-MXene@C | 0.5 mol/L H2SO4 | 135 | 45 | [ |
Mo2CTx/2H-MoS2 | 0.5 mol/L H2SO4 | 119 | 60 | [ |
MoS2⊥Ti3C2@220 | 0.5 mol/L H2SO4 | 95 | 40 | [ |
MD-Ti3C2/MoSx-100 | 0.5 mol/L H2SO4 | 165 | 41 | [ |
MoS2-Ti3C2 | 0.5 mol/L H2SO4 | 98 | 45 | [ |
CoS2@MXene | 0.1 mol/L KOH | 175 | 97 | [ |
TiOF2@Ti3C2Tx | 0.5 mol/L H2SO4 | 103 | 56.2 | [ |
S-M-5Pt | 0.5 mol/L H2SO4 | 62 | 78 | [ |
PtOaPdObNPs@Ti3C2Tx | 0.5 mol/L H2SO4 | 26.5 | 39 | [ |
CoP/MXene | 1 mol/L KOH | 113 | 57 | [ |
CoP/Ti3C2 MXene | 0.5 mol/L H2SO4 | 71 | 57.6 | [ |
1 mol/L PBS | 124 | 96.8 | ||
1 mol/L KOH | 102 | 68.7 | ||
Ti3C2@mNiCoP | 1 mol/L KOH | 127 | 103 | [ |
Ti2NTx@MOF-CoP | 1 mol/L KOH | 112 | 67.1 | [ |
1 mol/L PBS | 131 | 125.6 | ||
0.5 mol/L H2SO4 | 129 | 96.7 | ||
Co0.31Mo1.69C/MXene/NC | 0.5 mol/L H2SO4 | 81 | 24 | [ |
0.1 mol/L PBS | 126 | 46 | ||
1 mol/L KOH | 75 | 32 | ||
P-TiO2@Ti3C2 | 1 mol/L KOH | 97 | 48.4 | [ |
MX@C | 1 mol/L KOH | 134 | 32 | [ |
NiS2/V-MXene | 1 mol/L KOH | 179 | 85 | [ |
Co-MoS2/Mo2CTx | 1 mol/L KOH | 112 | 82 | [ |
Ag@N-Ti3C2Tx | 1 mol/L KOH | 153 | 137.9 | [ |
Ni2P/Ti3C2Tx/NF | 1 mol/L KOH | 135 | 86.6 | [ |
3D CNTs@Ti3C2Tx | 1 mol/L KOH | 93 | 128 | [ |
1T/2H MoSe2/MXene | 1 mol/L KOH | 95 | 91 | [ |
NiSe2/Ti3C2Tx | 2 mol/L KOH | 200 | 37.7 | [ |
Ni0.7Fe0.3PS3@MXene | 1 mol/L KOH | 282 | 36.5 | [ |
VOOH/Ti3C2Tx | 1 mol/L KOH | 100 | 81.8 | [ |
NiFe-LDH/MXene/NF | 1 mol/L KOH | 132 | 70 | [ |
NiFe2O4/Ti3C2 | 0.5 mol/L KOH | 173 | 112.2 | [ |
Co-CoO/Ti3C2-MXene | 1 mol/L KOH | 45 | 47 | [ |
BP QDs/MXene | 1 mol/L KOH | 190 | 83 | [ |
Catalyst | Electrolyte | η10 (mV) | Tafel slope (mV dec-1) | Ref. |
---|---|---|---|---|
CoNi-ZIF-67@Ti3C2Tx | 0.1 mol/L KOH | 323 | 65.1 | [ |
Ti3C2Tx/TiO2/NiFeCo-LDH | 0.1 mol/L KOH | 320 | 98.4 | [ |
PtOaPdObNPs@Ti3C2Tx | 0.1 mol/L KOH | 320 | 78 | [ |
Co-CoO/Ti3C2-MXene | 1 mol/L KOH | 271 | 47 | [ |
NiFe2O4/Ti3C2 | 0.5 mol/L KOH | 266 | 73.6 | [ |
FeOOH NSs/Ti3C2 | 1 mol/L KOH | 400 | 95 | [ |
M3OOH@V4C3Tx | 1 mol/L KOH | 275.2 | 51.4 | [ |
Ti3C2Tx-FeOOH | 1 mol/L KOH | 430 | 31.7 | [ |
CoFe-LDH/MXene | 1 mol/L KOH | 319 | 50 | [ |
FeCo-LDH/MXene | 1 mol/L KOH | 268 | 85 | [ |
NiFeCe-LDH/MXene | 1 mol/L KOH | 260 | 42.8 | [ |
FeNi-LDH/Ti3C2-MXene | 1 mol/L KOH | 298 | 43 | [ |
Co-LDH@Ti3C2Tx | 1 mol/L KOH | 340 | 82 | [ |
CoNi LDH/Ti3C2Tx | 1 mol/L KOH | — | 68 | [ |
NiFe LDH/N10TC/NF | 1 mol/L KOH | 196 | 68.4 | [ |
NiCoFe-LDH/Ti3C2 MXene/ NCNT | 0.1 mol/L KOH | 332 | 60 | [ |
VOOH/Ti3C2Tx | 1 mol/L KOH | 238 | 81.6 | [ |
NiFe-LDH/MXene/NF | 1 mol/L KOH | 229 | 44 | [ |
1T/2H MoSe2/MXene | 1 mol/L KOH | 340 | 90 | [ |
Ni0.9Fe0.1PS3@MXene | 1 mol/L KOH | 196 | 114 | [ |
CoS2@MXene | 0.1 mol/L KOH | 270 | 92 | [ |
CoP/MXene | 1 mol/L KOH | 230 | 50 | [ |
CoP/Ti3C2 MXene | 1 mol/L KOH | 280 | 95.4 | [ |
Ti3C2@mNiCoP | 1 mol/L KOH | 237 | 104 | [ |
BP QDs/MXene | 1 mol/L KOH | 360 | 64.3 | [ |
Table 3 OER performance data for MXene-based hybrids.
Catalyst | Electrolyte | η10 (mV) | Tafel slope (mV dec-1) | Ref. |
---|---|---|---|---|
CoNi-ZIF-67@Ti3C2Tx | 0.1 mol/L KOH | 323 | 65.1 | [ |
Ti3C2Tx/TiO2/NiFeCo-LDH | 0.1 mol/L KOH | 320 | 98.4 | [ |
PtOaPdObNPs@Ti3C2Tx | 0.1 mol/L KOH | 320 | 78 | [ |
Co-CoO/Ti3C2-MXene | 1 mol/L KOH | 271 | 47 | [ |
NiFe2O4/Ti3C2 | 0.5 mol/L KOH | 266 | 73.6 | [ |
FeOOH NSs/Ti3C2 | 1 mol/L KOH | 400 | 95 | [ |
M3OOH@V4C3Tx | 1 mol/L KOH | 275.2 | 51.4 | [ |
Ti3C2Tx-FeOOH | 1 mol/L KOH | 430 | 31.7 | [ |
CoFe-LDH/MXene | 1 mol/L KOH | 319 | 50 | [ |
FeCo-LDH/MXene | 1 mol/L KOH | 268 | 85 | [ |
NiFeCe-LDH/MXene | 1 mol/L KOH | 260 | 42.8 | [ |
FeNi-LDH/Ti3C2-MXene | 1 mol/L KOH | 298 | 43 | [ |
Co-LDH@Ti3C2Tx | 1 mol/L KOH | 340 | 82 | [ |
CoNi LDH/Ti3C2Tx | 1 mol/L KOH | — | 68 | [ |
NiFe LDH/N10TC/NF | 1 mol/L KOH | 196 | 68.4 | [ |
NiCoFe-LDH/Ti3C2 MXene/ NCNT | 0.1 mol/L KOH | 332 | 60 | [ |
VOOH/Ti3C2Tx | 1 mol/L KOH | 238 | 81.6 | [ |
NiFe-LDH/MXene/NF | 1 mol/L KOH | 229 | 44 | [ |
1T/2H MoSe2/MXene | 1 mol/L KOH | 340 | 90 | [ |
Ni0.9Fe0.1PS3@MXene | 1 mol/L KOH | 196 | 114 | [ |
CoS2@MXene | 0.1 mol/L KOH | 270 | 92 | [ |
CoP/MXene | 1 mol/L KOH | 230 | 50 | [ |
CoP/Ti3C2 MXene | 1 mol/L KOH | 280 | 95.4 | [ |
Ti3C2@mNiCoP | 1 mol/L KOH | 237 | 104 | [ |
BP QDs/MXene | 1 mol/L KOH | 360 | 64.3 | [ |
Catalyst | Electrolyte | Eonset (V vs. RHE) | E1/2 (V vs. RHE) | Ref. |
---|---|---|---|---|
Ru/Ti3C2Tx | 0.1 mol/L HClO4 | 0.92 | 0.80 | [ |
Pt/Ti3C2Tx | 0.1 mol/L HClO4 | — | 0.847 | [ |
Pt/Ti3C2Tx | 1 mol/L KOH | 0.95 | — | [ |
MXene/NW-Ag0.9Ti0.1 | 1 mol/L KOH | 0.921 | 0.782 | [ |
Pt NWs/Ti3C2Tx-CNT | 0.1 mol/L HClO4 | 1.02 | 0.896 | [ |
Pt/CNT-Ti3C2Tx | 0.1 mol/L HClO4 | — | 0.876 | [ |
Pd/Ti3C2Tx-CNT | 0.1 mol/L KOH | 1.085 | 0.925 | [ |
FeCo-N-d-Ti3C2 | 0.1 mol/L KOH | 0.96 | 0.80 | [ |
Fe-N-C@Ti3C2Tx | 0.1 mol/L HClO4 | — | 0.777 | [ |
0.1 mol/L KOH | — | 0.887 | ||
Fe-N-C/Ti3C2Tx | 0.1 mol/L KOH | 1 | 0.814 | [ |
Fe-N-C/Ti3C2Tx | 0.1 mol/L KOH | 0.92 | 0.84 | [ |
FePc/Ti3C2Tx | 0.1 mol/L KOH | 0.97 | 0.89 | [ |
g-C3N4/Ti3C2 | 0.1 mol/L KOH | 0.92 | 0.79 | [ |
MoS2QDs@ Ti3C2TxQDs@MWCNTs | 1.0 mol/L KOH | 0.87 | 0.75 | [ |
MXene@PPy-800 | 0.1 mol/L KOH | 0.85 | 0.710 | [ |
Co-CNT/Ti3C2-60 | 0.1 mol/L KOH | — | 0.820 | [ |
Ti3C2/NSCD-600 | 0.1 mol/L KOH | 0.98 | 0.81 | [ |
Co3O4/NCNT/Ti3C2 | 0.1 mol/L KOH | — | 0.79 | [ |
CoS2@MXene | 0.1 mol/L KOH | 0.87 | 0.80 | [ |
NiFeMn-N/N-Ti3C2 | 0.1 mol/L KOH | 0.95 | 0.84 | [ |
N-CoSe2/Ti3C2Tx | 0.1 mol/L KOH | 0.95 | 0.79 | [ |
NiCo2O4/MXene | 0.1 mol/L KOH | — | 0.70 | [ |
Mn3O4/MXene | 0.1 mol/L KOH | 0.89 | — | [ |
NiCoFe-LDH/Ti3C2 MXene/NCNT | 0.1 mol/L KOH | 0.93 | 0.78 | [ |
Table 4 ORR performance data for MXene-based hybrids.
Catalyst | Electrolyte | Eonset (V vs. RHE) | E1/2 (V vs. RHE) | Ref. |
---|---|---|---|---|
Ru/Ti3C2Tx | 0.1 mol/L HClO4 | 0.92 | 0.80 | [ |
Pt/Ti3C2Tx | 0.1 mol/L HClO4 | — | 0.847 | [ |
Pt/Ti3C2Tx | 1 mol/L KOH | 0.95 | — | [ |
MXene/NW-Ag0.9Ti0.1 | 1 mol/L KOH | 0.921 | 0.782 | [ |
Pt NWs/Ti3C2Tx-CNT | 0.1 mol/L HClO4 | 1.02 | 0.896 | [ |
Pt/CNT-Ti3C2Tx | 0.1 mol/L HClO4 | — | 0.876 | [ |
Pd/Ti3C2Tx-CNT | 0.1 mol/L KOH | 1.085 | 0.925 | [ |
FeCo-N-d-Ti3C2 | 0.1 mol/L KOH | 0.96 | 0.80 | [ |
Fe-N-C@Ti3C2Tx | 0.1 mol/L HClO4 | — | 0.777 | [ |
0.1 mol/L KOH | — | 0.887 | ||
Fe-N-C/Ti3C2Tx | 0.1 mol/L KOH | 1 | 0.814 | [ |
Fe-N-C/Ti3C2Tx | 0.1 mol/L KOH | 0.92 | 0.84 | [ |
FePc/Ti3C2Tx | 0.1 mol/L KOH | 0.97 | 0.89 | [ |
g-C3N4/Ti3C2 | 0.1 mol/L KOH | 0.92 | 0.79 | [ |
MoS2QDs@ Ti3C2TxQDs@MWCNTs | 1.0 mol/L KOH | 0.87 | 0.75 | [ |
MXene@PPy-800 | 0.1 mol/L KOH | 0.85 | 0.710 | [ |
Co-CNT/Ti3C2-60 | 0.1 mol/L KOH | — | 0.820 | [ |
Ti3C2/NSCD-600 | 0.1 mol/L KOH | 0.98 | 0.81 | [ |
Co3O4/NCNT/Ti3C2 | 0.1 mol/L KOH | — | 0.79 | [ |
CoS2@MXene | 0.1 mol/L KOH | 0.87 | 0.80 | [ |
NiFeMn-N/N-Ti3C2 | 0.1 mol/L KOH | 0.95 | 0.84 | [ |
N-CoSe2/Ti3C2Tx | 0.1 mol/L KOH | 0.95 | 0.79 | [ |
NiCo2O4/MXene | 0.1 mol/L KOH | — | 0.70 | [ |
Mn3O4/MXene | 0.1 mol/L KOH | 0.89 | — | [ |
NiCoFe-LDH/Ti3C2 MXene/NCNT | 0.1 mol/L KOH | 0.93 | 0.78 | [ |
|
[1] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[2] | 乔蔚, 于立策, 常进法, 杨甫林, 冯立纲. MoSe2纳米片耦合Pt纳米颗粒用于高效双功能催化甲醇辅助水电解制氢[J]. 催化学报, 2023, 51(8): 113-123. |
[3] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[4] | 韩策, 梅丙宝, 张庆华, 张慧敏, 姚鹏飞, 宋平, 宫雪, 崔培昕, 姜政, 谷林, 徐维林. 钒掺杂钨青铜内通道氨配位的钌单原子用于高效析氢反应[J]. 催化学报, 2023, 51(8): 80-89. |
[5] | 韩璟怡, 管景奇. 通过表面镧改性和体相锰掺杂协助钴尖晶石酸性下析氧[J]. 催化学报, 2023, 51(8): 1-4. |
[6] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[7] | 陈斌, 蒋亚飞, 肖海, 李隽. 石墨炔负载的双金属单团簇催化剂用于碱性析氢反应[J]. 催化学报, 2023, 50(7): 306-313. |
[8] | 张光颖, 刘旭, 张欣欣, 梁志坚, 邢耕宇, 蔡斌, 沈迪, 王蕾, 付宏刚. P修饰提高Fe-N-C的氧反应活性用于高稳定的锌-空气电池[J]. 催化学报, 2023, 49(6): 141-151. |
[9] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[10] | 张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48(5): 15-31. |
[11] | 韦之栋, 严嘉玮, 郭伟琦, 上官文峰. 多面体SrTiO3原位生长N缺陷PCN中的纳米叠层效应助力光催化完全分解水: 内建电场调控的协同机制[J]. 催化学报, 2023, 48(5): 279-289. |
[12] | Sue-Faye Ng, 陈星竹, Joel Jie Foo, 熊墨, Wee-Jun Ong. 2D氮化碳: 通过调节非金属硼掺杂C3N5阐明宽酸性及碱性pH范围的光催化析氢的反应机理[J]. 催化学报, 2023, 47(4): 150-160. |
[13] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[14] | 张志普, 卢珊珊, 张兵, 史艳梅. 揭示硫掺杂的碳材料在水电氧化过程中活性苯醌基团及惰性硫残留物的形成[J]. 催化学报, 2023, 47(4): 129-137. |
[15] | 唐甜蜜, 王寅, 韩憬怡, 张巧巧, 白雪, 牛效迪, 王振旅, 管景奇. 用于氧还原反应的双原子钴-铁催化剂[J]. 催化学报, 2023, 46(3): 48-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||