催化学报 ›› 2022, Vol. 43 ›› Issue (6): 1493-1501.DOI: 10.1016/S1872-2067(21)63952-9

• 论文 • 上一篇    下一篇

痕量Pt显著提升RuO2的酸性水分解性能

姚青a,, 乐家波b,, 杨是赜c, 程俊d, 邵琪a, 黄小青a,d,*()   

  1. a苏州大学材料与化学化工学部, 江苏苏州215123, 中国
    b中国科学院宁波材料技术与工程研究所, 浙江宁波315201, 中国
    c亚利桑那州立大学艾林材料中心, 坦佩, 美国
    d厦门大学化学化工学院固体表面物理化学国家重点实验室, 福建厦门361005, 中国
  • 收稿日期:2021-08-02 接受日期:2021-08-02 出版日期:2022-06-18 发布日期:2022-04-14
  • 通讯作者: 黄小青
  • 作者简介:第一联系人:

    共同第一作者

  • 基金资助:
    科技部重点研发计划(2017YFA0208200);科技部重点研发计划(2016YFA0204100);国家自然科学基金(22025108);国家自然科学基金(21902136);江苏省自然科学杰出青年基金(BK20170003);江苏省高等学校重点学科建设项目(PAPD);厦门大学启动资金

A trace of Pt can significantly boost RuO2 for acidic water splitting

Qing Yaoa,, Jiabo Leb,, Shize Yangc, Jun Chengd, Qi Shaoa, Xiaoqing Huanga,d,*()   

  1. aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
    bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
    cEyring Materials Center, Arizona State University, Tempe, Arizona, USA
    dState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2021-08-02 Accepted:2021-08-02 Online:2022-06-18 Published:2022-04-14
  • Contact: Xiaoqing Huang
  • About author:First author contact:

    † Contributed equally to this work.

  • Supported by:
    State Key Program of Ministry of Science and Technology(2017YFA0208200);State Key Program of Ministry of Science and Technology(2016YFA0204100);National Natural Science Foundation of China(22025108);National Natural Science Foundation of China(21902136);Jiangsu Province Natural Science Fund for Distinguished Young Scholars(BK20170003);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);Start-up Funding from Xiamen University

摘要:

酸性电解水被认为是目前最具前景的制备高纯度氢气的途径之一. 然而, 该方法受到一些关键技术的限制, 如电解水中的阳极反应——析氧反应(OER), 目前仍效率偏低. Ru和Ir的氧化物是目前最具潜力的酸性OER催化剂, 尤其是RuO2, 不仅成本更低, 而且OER活性更高. 相较于IrO2, RuO2在酸性OER中更易溶解, 导致其难以在活性与稳定性上保持良好的平衡. 因此, 设计同时具有高活性与高稳定性的RuO2基电催化剂十分迫切且具有挑战性. 一般而言, 催化剂性能与活性位点的局部电子环境密切相关, 因为它能够有效调节反应中间体的吸附/解吸行为. 在各种调控策略中, 引入异原子已被证明是有效的.
本文报道了通过痕量的Pt激活和稳定用于酸性水分解的RuO2催化剂的简便策略, 其中Pt在促进OER中起到重要的调控作用, 同时在析氢反应(HER)中充当着活性位点. 通过简便的湿化学法并结合空气煅烧的后处理方式得到了含有5% Pt的RuO2纳米组装片(5%Pt-Ru ONAs). 球差校正透射电镜结果表明, 在RuO2的晶格中分布着一定数量的原子大小的亮点, 说明单分散的Pt原子掺入了RuO2的晶格中. 电化学测试结果表明, 与纯RuO2纳米组装片(Ru ONAs)相比, 5%Pt-Ru ONAs在0.5和0.05 mol/L H2SO4中展示出了更高的OER活性, 在10 mA cm‒2时的过电位分别仅为227和234 mV. 此外, 5%Pt-Ru ONAs在0.5 mol/L H2SO4中也展示出更好的OER稳定性.
X射线光电子能谱(XPS)测试结果表明, 5%Pt-Ru ONAs中的R4+/Ru0比例显著高于Ru ONAs, 表明5%Pt-Ru ONAs具有更多高效的活性位点. 另外, O 1s XPS和电子顺磁共振波谱结果表明, 5%Pt-Ru ONAs具有最高的氧空位浓度, 这主要是由于原子级分散的Pt掺入RuO2晶格, 为了保持电荷平衡而诱导产生了更高浓度的氧空位. 为深入理解RuO2中的Pt原子如何影响OER活性, 进行了密度泛函理论计算. 结果表明, 相比于纯RuO2, 氧空位更容易在Pt掺杂的RuO2(Pt-RuO2)中产生, 这与实验结果一致. 此外, 本文计算了酸性OER中四个步骤的吉布斯自由能, 结果发现, 在反应过程中, OOH*中间体的形成是限速步骤, 而OOH*在具有氧空位的Pt-RuO2上的吸附更强, 意味着形成OOH*所需的能垒更低, 进而有效地提升了活性. 除OER反应活性外, 活性Pt的存在也提升了5%Pt-Ru ONAs的HER反应活性, 从而实现高效的酸性水分解. 综上, 本文展示了一种可高效应用于酸性水分解的RuO2基催化剂的设计策略.

关键词: 钌, 铂, 氧空位, 酸性, 水分解

Abstract:

The development of highly potential electrocatalysts for acidic water electrolysis is particularly desirable for many energy-related processes. Herein, we demonstrated a versatile strategy to activate and stabilize RuO2-based electrocatalyst for acidic water splitting by a trace of Pt, where Pt plays an essential role in promoting oxygen evolution reaction (OER), and can simultaneously act as the active site for hydrogen evolution reaction (HER). Compared with pure Ru oxide nanosheet assemblies (Ru ONAs), the “5%Pt-containing” Ru ONAs (5%Pt-Ru ONAs) achieve much enhanced OER activity in 0.5 and 0.05 mol/L H2SO4, with much lower overpotentials of 227 and 234 mV at 10 mA cm‒2, respectively. Experimental and theoretical analyses reveal that the atomically dispersed Pt incorporating into RuO2 lattice is conducive to increasing the concentration of O vacancies, which effectively enhances the interaction with reaction intermediate and thus lowers the energy barrier for the formation of OOH*. Moreover, benefited from the presence of Pt, the formation of RuO2 is more achievable when proper annealing is applied. In addition to OER, due to the presence of active Pt, the HER performance of 5%Pt-Ru ONAs can also be ensured, thereby realizing efficient acidic overall water splitting. Finally, the excellent activity can also be achieved without sacrificing stability. This work highlights an attractive strategy for designing active and stable RuO2-based electrocatalysts for acidic overall water splitting.

Key words: Ruthenium, Platinum, Oxygen vacancy, Acidic, Water splitting