催化学报 ›› 2022, Vol. 43 ›› Issue (3): 839-850.DOI: 10.1016/S1872-2067(21)63922-0

• 论文 • 上一篇    下一篇

(Co,Ni)Se2/C@FeOOH中空笼状纳米结构的自旋调控加速水氧化催化研究

谷雨a,b,, 王晓蕾c,, Muhammad Humayuna, 李林峰a, 孙华传a, 许雪飞a, 薛新英d, Aziz Habibi-Yangjehe, Kristiaan Temstf, 王春栋a,b,*()   

  1. a华中科技大学光学与电子信息学院, 武汉光电国家研究中心, 湖北武汉 430074, 中国
    b中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室, 上海 200050, 中国
    c北京工业大学理学部物理与光电学院, 北京 100124, 中国
    d石河子大学理学院物理系, 新疆石河子 832003, 中国
    e莫哈格·阿达比里大学理学院化学系, 阿尔达比勒, 伊朗
    f鲁汶大学物理和天文系量子固体物理所, 鲁汶, 比利时
  • 收稿日期:2021-06-12 修回日期:2021-06-12 出版日期:2022-03-18 发布日期:2022-02-18
  • 通讯作者: 王春栋
  • 作者简介:第一联系人:

    共同第一作者

  • 基金资助:
    国家重点研发计划(2017YFE0120500);国家自然科学基金(51972129);新疆生产建设兵团南疆重点产业创新发展计划(2020DB002);湖北省重点研发计划(2020BAB079);高性能陶瓷和超微结构国家重点实验室开放课题(SKL202008SIC);中央高校基本科研业务费专项资金(HUST 2018KFYYXJJ051);中央高校基本科研业务费专项资金(2019KFYXMBZ076);湖北省楚天学子项目

Spin regulation on (Co,Ni)Se2/C@FeOOH hollow nanocage accelerates water oxidation

Yu Gua,b,, Xiaolei Wangc,, Muhammad Humayuna, Linfeng Lia, Huachuan Suna, Xuefei Xua, Xinying Xued, Aziz Habibi-Yangjehe, Kristiaan Temstf, Chundong Wanga,b,*()   

  1. aSchool of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    bState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    cCollege of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
    dDepartment of Physics, College of Science, Shihezi University, Shihezi 832003, Xinjiang, China
    eDepartment of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
    fQuantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D-Box 2418, B-3001 Leuven, Belgium
  • Received:2021-06-12 Revised:2021-06-12 Online:2022-03-18 Published:2022-02-18
  • Contact: Chundong Wang
  • About author:First author contact:

    Contributed equally to this work.

  • Supported by:
    National Key R&D Program of China(2017YFE0120500);National Natural Science Foundation of China(51972129);South Xinjiang In-novation and Development Program of Key Industries of Xinjiang Production and Construction Corps (2020DB002)(2020DB002);Key Research and Development Program of Hubei(2020BAB079);Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Mi-crostructure(SKL202008SIC);Fundamental Research Funds for the Central Universities(HUST 2018KFYYXJJ051);Fundamental Research Funds for the Central Universities(2019KFYXMBZ076)

摘要:

氢气作为一种清洁无污染的可再生能源, 可以有效地解决全球能源危机和环境污染问题. 低能耗水裂解制氢是公认的未来清洁制氢的有效途径之一. 水裂解反应分为阳极上发生的析氧反应(OER)和阴极上发生的析氢反应, 由于阳极半反应涉及四电子过程, 反应动力学缓慢, 进而导致整个水分解产氢效率低下, 成为规模化水裂解制氢应用的瓶颈. 贵金属Ir基和Ru基催化剂具有较好的OER催化性能, 但其价格高昂和低储量极大地限制了其大规模应用. 因此, 设计出性能优良的非贵金属OER催化剂, 对于促进电催化水裂解制氢领域的发展具有重要意义.
+自旋调控可以调节d-轨道电子与含氧物种之间的自旋占据态, 进而改变含氧物种的吸附能, 提升催化反应动力学. 然而, 自旋调控如何提升电催化水氧化及其内部的关联性鲜有报道. 本文报道了一种(Co,Ni)Se2/C@FeOOH笼状纳米结构的自旋调控工程以提升其析氧反应活性. 以金属有机框架材料ZIF-67为前驱体, 采用离子交换方法和化学气相沉积法合成了(Co,Ni)Se2/C中空笼状纳米结构, 接着通过化学水浴沉积法用FeOOH进行修饰, 进一步提高了电催化反应动力学. 磁化测试结果表明, (Co,Ni)Se2/C@FeOOH样品的极化自旋数(μb = 6.966 μb/f.u)高于(Co,Ni)Se2/C样品的极化自旋数(μb = 6.398 μb/f.u), 从而有利于含氧中间体的吸附和脱附, 这与表面价带谱的结果一致. 与(Co,Ni)Se2/C相比, (Co,Ni)Se2/C@FeOOH样品具有更强的铁磁性, 电磁感应促进了磁性粒子最外层电子的自旋. 电子自旋的增加有利于(Co,Ni)Se2/C@FeOOH样品最外层电子能级的跃迁, 在3d-轨道上产生更多的空电子轨道和未成对电子, 有利于电子转移和氧吸附. Ni, Co和Fe之间的π电子在界面处的局域化重组再分配优化了对含氧物种的吸附与脱附自由能, 提升了OER催化性能. 此外, 所设计的中空笼状纳米结构和杂原子掺杂碳基体对提高OER活性也有重要作用. 因此, 在1.0 mol/L KOH碱性溶液中, (Co,Ni)Se2/C@FeOOH催化剂展现出较好的析氧反应性能, 在10 mA cm‒2电流下的过电位为241 mV, 塔菲尔斜率为44 mV dec‒1, 明显优于原先的(Co,Ni)Se2/C催化剂. 本文将为高效OER电催化剂的设计提供一种新的思路和方法.

关键词: 自旋工程, d-轨道电子, 中空笼状纳米结构, 羟基氧化铁, 析氧反应

Abstract:

Spin engineering is recognized as a promising strategy that modulates the association between d-orbital electrons and the oxygenated species, and enhances the catalytic kinetics. However, few efforts have been made to clarify whether spin engineering could make a considerable enhancement for electrocatalytic water oxidation. Herein, we report the spin engineering of a nanocage-structured (Co,Ni)Se2/C@FeOOH, that showed significant oxygen evolution reaction (OER) activity. Magnetization measurement presented that the (Co,Ni)Se2/C@FeOOH sample possesses higher polarization spin number (μb = 6.966 μB/f.u.) compared with that of the (Co,Ni)Se2/C sample (μb = 6.398 μB/f.u.), for which the enlarged spin polarization number favors the adsorption and desorption energy of the intermediate oxygenated species, as confirmed by surface valance band spectra. Consequently, the (Co,Ni)Se2/C@FeOOH affords remarkable OER product with a low overpotential of 241 mV at a current of 10 mA cm-2 and small Tafel slope of 44 mV dec-1 in 1.0 mol/L KOH alkaline solution, significantly surpassing the parent (Co,Ni)Se2/C catalyst. This work will trigger a solid step for the design of highly-efficient OER electrocatalysts.

Key words: Spin engineering, d-Orbital electron, Hollow nanocage, FeOOH, Oxygen evolution reaction