催化学报 ›› 2022, Vol. 43 ›› Issue (3): 832-838.DOI: 10.1016/S1872-2067(21)63893-7

• 论文 • 上一篇    下一篇

单原子Co位点的CO2还原反应路径:局部配位环境的影响

高海峡a,b, 刘康b, 罗涛b, 陈羽b, 胡俊华c, 傅俊伟b,#(), 刘敏b,*()   

  1. a湖南科技学院理学院, 湖南永州 425100
    b中南大学物理与电子学院, 湖南长沙 410083
    c郑州大学材料科学与工程学院, 河南郑州 450002
  • 收稿日期:2021-06-03 修回日期:2021-06-03 出版日期:2022-03-18 发布日期:2022-02-18
  • 通讯作者: 傅俊伟,刘敏
  • 基金资助:
    国家自然科学基金项目(21872174);国家自然科学基金项目(22002189);国家自然科学基金项目(U1932148);国际科技合作项目(2017YFE0127800);国际科技合作项目(2018YFE0203402);湖南省科技项目(2017TP1001);湖南省科技项目(2017xk2026);湖南省自然科学基金项目(2020JJ2041);湖南省自然科学基金项目(2020JJ5691);湖南省自然科学基金项目(2020JJ4322);湖南省重点项目(2020WK2002);深圳市科技创新项目(JCYJ20180307151313532);中南大学中央高校科研专项资金;湖南省教育厅科研项目(19A193);湖南科技学院人才引进计划(111021804013);湖南科技学院应用特色学科建设重点项目

CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment

Haixia Gaoa,b, Kang Liub, Tao Luob, Yu Chenb, Junhua Huc, Junwei Fub,#(), Min Liub,*()   

  1. aCollege of Science, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
    bSchool of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
    cSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, Henan, China
  • Received:2021-06-03 Revised:2021-06-03 Online:2022-03-18 Published:2022-02-18
  • Contact: Junwei Fu, Min Liu
  • Supported by:
    National Natural Science Foundation of China(21872174);National Natural Science Foundation of China(22002189);National Natural Science Foundation of China(U1932148);International Science and Technology Cooperation Program(2017YFE0127800);International Science and Technology Cooperation Program(2018YFE0203402);Hunan Provincial Science and Technology Program(2017TP1001);Hunan Provincial Science and Technology Program(2017xk2026);Hunan Provincial Natural Science Foundation(2020JJ2041);Hunan Provincial Natural Science Foundation(2020JJ5691);Hunan Provincial Natural Science Foundation(2020JJ4322);Hunan Provincial Key Research and Development Program(2020WK2002);Shenzhen Science and Technology Innovation Project(JCYJ20180307151313532);Fundamental Research Funds for the Central Universities of Central South University;Scientific Research Project of Education Department of Hunan Province(19A193);Talent-Introduction Program of Hunan University of Science and Engineering(111021804013);Construct Program of Applied Characteristic Discipline in Hunan University of Science and Engineering

摘要:

在CO2还原反应(CO2RR)应中, 单原子催化剂被认为是很有前途的电催化剂. Co-N4活性位点因其优异的CO选择性和活性而受到广泛关注. 然而, Co位点的局部配位环境与CO2RR途径之间的相关性尚不明确. 本文采用密度泛函理论(DFT)计算, 研究了含1,10-菲咯啉基底的N4-大环配体(Co-N4-CPY)负载的CoN4位点上的CO2RR路径. 该模型的平面空间构型使其具有高度离域的π电子轨道, 可以通过π-π相互作用更好地与底物相互作用. 在相对可逆氢电极(RHE)为‒0.70 V时, 最大CO的法拉第效率为96%, CO的转换频率为9.59 s-1. 众所周知, 单原子位点的局部配位环境可以进一步优化电催化性能. 因此, 本文还研究了N被O(Co-N3O-CPY)和C(Co-N3C-CPY)取代的单原子Co位点的局部配位环境.
计算结果表明, Co-N4, Co-N3O和Co-N3C位点的键长相差不大, 而且其结合能都较大, 意味着它们具有良好的稳定性. Co-N3C-CPY, Co-N3O-CPY和Co-N4-CPY的投影态密度(PDOS)、电荷密度差分和晶体轨道哈密顿布居(COHP)显示, C和O配位均打破了初始CoN4配体场的对称性, 并诱发了Co原子的电荷再分布. Co原子与配位原子间的相互作用由强到弱依次为Co‒C键、Co‒N键和Co‒O键, 这与电负性O > N > C相反. 通过分析CO2RR过程的吉布斯自由能变化, 确定了Co-N4-CPY的主要产物为CO. 当Co-N4位点的局部配位环境改变后, Co-N3O位点上有利于*COOH的形成, 而Co-N3C位点对碳氢化合物(CH3OH或CH4)有更高的选择性. 这是由于CO2在Co-N3O位点上更容易质子化形成*OCHO, 从而有利于HCOOH的形成. 而在Co-N3C位点上时, 由于*CO难以脱附, *CO将进一步质子化, 最终形成CH3OH或CH4. CO2质子化形成*COOH或*OCHO的PDOS显示, 在Co位上吸附之前, *OCHO的自旋密度是对称的, 而*COOH的自旋密度是不对称的. 对于催化剂而言, 只有Co-N3O-CPY的自旋密度是对称的, 因此容易形成*OCHO中间体. Co-3d轨道与*COOH的C-2p轨道和*OCHO的O-2p轨道的相互作用也体现了这一关系. 本工作为单原子位点的局部配位环境与CO2RR途径之间的关系提供了一个新的视角.

关键词: 配位环境, 产品选择性, 单原子催化剂, CO2还原反应, 密度泛函理论计算

Abstract:

Single-atom catalysts have been proposed as promising electrocatalysts for CO2 reduction reactions (CO2RR). Co-N4 active sites have attracted wide attention owing to their excellent CO selectivity and activity. However, the effect of the local coordination environment of Co sites on CO2 reduction reaction pathways is still unclear. In this study, we investigated the CO2 reduction reaction pathways on Co-N4 sites supported on conjugated N4-macrocyclic ligands with 1,10-phenanthroline subunits (Co-N4-CPY) by density functional theory calculations. The local coordination environment of single-atom Co sites with N substituted by O (Co-N3O-CPY) and C (Co-N3C-CPY) was studied for comparison. The calculation results revealed that both C and O coordination break the symmetry of the primary CoN4 ligand field and induce charge redistribution of the Co atom. For Co-N4-CPY, CO was confirmed to be the main product of CO2RR. HCOOH is the primary product of Co-N3O-CPY because of the greatly increased energy barrier of CO2 to *COOH. Although the energy barrier of CO2 to *COOH is reduced on Co-N3C-CPY, the desorption process of *CO becomes more difficult. CH3OH (or CH4) are obtained by further *CO hydrogenation reduction when using Co-N3C-CPY. This work provides new insight into the effect of the local coordination environment of single-atom sites on CO2 reduction reaction pathways.

Key words: Coordination environment, Product selectivity, Single-atom catalyst, CO2 reduction reaction, DFT calculation