催化学报 ›› 2022, Vol. 43 ›› Issue (5): 1258-1266.DOI: 10.1016/S1872-2067(21)63963-3

• 论文 • 上一篇    下一篇

基于Pt@TiO2催化剂光-热协同催化甲醇-水液相重整甲醇制氢

李垒a, 欧阳汶俊a, 郑泽锋a, 叶凯航a, 郭禹希a, 秦延林a, 伍珍珍b, 林展a(), 王铁军a(), 张山青b()   

  1. a广东工业大学广东省植物资源生物炼制重点实验室, 广东广州510006, 中国
    b格里菲斯大学环境与科学学院, 催化与清洁能源中心, 昆士兰, 澳大利亚
  • 收稿日期:2021-09-19 接受日期:2021-10-22 出版日期:2022-05-18 发布日期:2022-03-23
  • 通讯作者: 林展,王铁军,张山青
  • 基金资助:
    国家自然科学基金(21902034)

Synergetic photocatalytic and thermocatalytic reforming of methanol for hydrogen production based on Pt@TiO2 catalyst

Lei Lia, Wenjun Ouyanga, Zefeng Zhenga, Kaihang Yea, Yuxi Guoa, Yanlin Qina, Zhenzhen Wub, Zhan Lina(), Tiejun Wanga(), Shanqing Zhangb()   

  1. aGuangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
    bCentre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, Australia
  • Received:2021-09-19 Accepted:2021-10-22 Online:2022-05-18 Published:2022-03-23
  • Contact: Zhan Lin, Tiejun Wang, Shanqing Zhang
  • Supported by:
    National Natural Science Foundation of China(21902034)

摘要:

氢能以其高能量密度和零排放的特点成为新一代能源载体的理想选择. 作为一种潜在的二次能源, 氢气在商业燃料电池、发电、汽车、航空航天等领域引起了广泛关注. 甲醇-氢能源体系对于解决氢能应用中储存和输送的瓶颈问题具有重大意义. 传统甲醇-水重整制氢由于氢释放过程的吉布斯自由能很高(决速步$\Delta_{r} G_{m}^{\varnothing}$63.7 kJ·mol‒1), 通常需要较高的温度(>200 ºC). 相比较而言, 常温光催化分解水制氢被认为是另一种很有前途的方法. 当甲醇作为牺牲剂时, 通过光生电子-空穴对与甲醇-水分子之间的氧化还原反应, 可在比单纯热催化过程低得多的温度下生成氢气, 但由于动力学的限制, 光催化制氢的能量转换效率仍然远远低于工业要求. 为了解决热催化制氢能垒高、能耗大以及光催化反应效率低的问题, 将光引入热重整催化过程, 改善热催化反应过程及热加速光催化反应相结合, 有望解决传统热催化或纯光催化制氢技术的有关问题.

本文利用经典催化剂体系Pt@TiO2, 系统考察了其在光催化、热催化以及光辅助热催化条件下的甲醇-水体系液相重整制氢的效率, 并通过X射线衍射、扫描电子显微镜、透射电子显微镜、能量色散X射线光谱、拉曼光谱、光电流测试、X射线光电子能谱等对催化剂进行了系统的表征, 深入深究了催化剂的理化性质以及部分反应机理. 结果表明, 光的引入可以显著降低反应活化能并提升制氢效率, 光辅助条件下产氢速率明显优于单一的热催化和光催化下的产氢效率, 且大于两种单一催化条件下产氢速率之和. 其中, 0.05%Pt@TiO2催化剂催化制氢效率达到5.66 μmol·H2·g‒1catalyst·s‒1, 比单纯热催化和光催化条件下分别提高了约3倍和7倍. 同位素实验及活性中间体捕获实验结果表明, 光生空穴和羟基自由基增强了甲醇脱氢活性, 同时光辅助热催化条件下改善了水分子裂解的动力学过程. 光辅助的热催化液相甲醇重整制氢过程遵循了不同于传统热催化机理, 并由于光和热的协同作用而大大提升了制氢效率.

关键词: 水相重整, 光催化, 热催化, 协同效应, Pt@TiO2催化剂, 甲醇, 氢气

Abstract:

In order to efficiently produce H2, conventional methanol-water thermocatalytic (TC) reforming requires a very high temperature due to high Gibbs free energy, while the energy conversion efficiency of methanol-water photocatalytic (PC) reforming is far from satisfaction because of the kinetic limitation. To address these issues, herein, we incorporate PC and TC processes together in a specially designed reactor and realize simultaneous photocatalytic/thermocatalytic (PC-TC) reforming of methanol in an aqueous phase. Such a design facilitates the synergetic effect of the PC and TC process for H2 production due to a lower energy barrier and faster reaction kinetics. The methanol-water reforming based on the optimized 0.05%Pt@TiO2 catalyst delivers an outstanding H2 production rate in the PC-TC process (5.66 μmol H2·g‒1 catalyst·s‒1), which is about 3 and 7 times than those of the TC process (1.89 μmol H2·g‒1 catalyst·s‒1) and the PC process (0.80 μmol H2·g‒1 catalyst·s‒1), respectively. Isotope tracer experiments, active intermediate trapping experiments, and theoretical calculations demonstrate that the photo-generated holes and hydroxyl radicals could enhance the methanol dehydrogenation, water molecule splitting, and water-gas shift reaction, while high temperature accelerates reaction kinetics. The proposed PC-TC reforming of methanol for hydrogen production can be a promising technology to solve the energy and environmental issue in the closed-loop hydrogen economy in the near future.

Key words: Aqueous-phase reforming, Photocatalysis, Thermocatalysis, Pt@TiO2 catalyst, Methanol, Hydrogen