催化学报 ›› 2022, Vol. 43 ›› Issue (5): 1247-1257.DOI: 10.1016/S1872-2067(21)63973-6

• 论文 • 上一篇    下一篇

基于溶液化学策略构建背接触FTO/赤铁矿光阳极界面工程的高效光催化水氧化研究

Karen Cristina Bedina,b, Beatriz Mouriñoa, Ingrid Rodríguez-Gutiérreza,b, João Batista Souza Juniora, Gabriel Trindade dos Santosa,c, Jefferson Bettinia, Carlos Alberto Rodrigues Costaa, Lionel Vayssieresd(), Flavio Leandro Souzaa,b()   

  1. a巴西能源和材料研究中心, 国家纳米技术实验室, 坎皮纳斯13083-970, 巴西
    bABC联邦大学, 自然和人文科学中心, 圣安德烈, 巴西
    c南里奥格兰德联邦大学, 南里奥格兰德, 巴西
    d西安交通大学能源与电力工程学院, 电力工程多相流国家重点实验室, 可再生能源国际研究中心(IRCRE), 陕西西安710049, 中国
  • 收稿日期:2021-10-01 接受日期:2021-11-11 出版日期:2022-05-18 发布日期:2022-03-23
  • 通讯作者: Lionel Vayssieres,Flavio Leandro Souza
  • 基金资助:
    CNPq, CAPES, FAPESP (2017/02317-2 and 2017/11986-5);Shell and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation (Grant PRH49/UFABC-ANP)

Solution chemistry back-contact FTO/hematite interface engineering for efficient photocatalytic water oxidation

Karen Cristina Bedina,b, Beatriz Mouriñoa, Ingrid Rodríguez-Gutiérreza,b, João Batista Souza Juniora, Gabriel Trindade dos Santosa,c, Jefferson Bettinia, Carlos Alberto Rodrigues Costaa, Lionel Vayssieresd(), Flavio Leandro Souzaa,b()   

  1. aThe National Nanotechnology Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
    bCentro de Ciências Naturais e Humanas (CCNH), Federal University of ABC (UFABC), Santo André 09210580, Brazil
    cFederal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
    dInternational Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2021-10-01 Accepted:2021-11-11 Online:2022-05-18 Published:2022-03-23
  • Contact: Lionel Vayssieres, Flavio Leandro Souza
  • Supported by:
    CNPq, CAPES, FAPESP (2017/02317-2), FAPESP (2017/11986-5);Shell and the strategic importance of the supportgiven by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation, PRH49/UFABC‐ANP for the fellowship, the National Natural Science Foundation of China (NSFC), the Outstanding Talent Program of Shaanxi Province as well as FAPESP (2017/11986-5)

摘要:

本文采用一种简单、有效的规模化溶液化学策略, 在基底(如商用氟掺杂氧化锡透明导电涂层玻璃(FTO))和光活性薄膜(如赤铁矿)之间形成丰富的背接触界面, 并用于低成本水氧化反应. 高分辨率电子显微镜(扫描电镜、透射电镜、扫描透射电镜)、原子力显微镜、元素成像(电子能量损失谱和能量色散谱)和光电化学研究表明, 可通过前驱体溶液的化学成分工程来有效降低机械应力、晶格失配、电子势垒和FTO与赤铁矿在背面接触界面之间的空隙以及FTO与电解液之间的短路和有害反应, 进而提升这些低成本光阳极对水氧化反应以及PEC水分解清洁、可持续地生产氢气的整体效率. 本研究对通过最小化在介孔电极的背接触界面和晶粒边界上的电子-空穴复合, 进而提高电荷收集效率具有重要意义, 可提高低成本PEC水裂解装置的整体效率和规模化的能力.

关键词: 纳米结构, 氧化铁, 水氧化, 光阳极, 表面工程, 化学合成

Abstract:

This work describes a simple yet powerful scalable solution chemistry strategy to create back-contact rich interfaces between substrates such as commercial transparent conducting fluorine-doped tin oxide coated glass (FTO) and photoactive thin films such as hematite for low-cost water oxidation reaction. High-resolution electron microscopy (SEM, TEM, STEM), atomic force microscopy (AFM), elemental chemical mapping (EELS, EDS) and photoelectrochemical (PEC) investigations reveal that the mechanical stress, lattice mismatch, electron energy barrier, and voids between FTO and hematite at the back-contact interface as well as short-circuit and detrimental reaction between FTO and the electrolyte can be alleviated by engineering the chemical composition of the precursor solutions, thus increasing the overall efficiency of these low-cost photoanodes for water oxidation reaction for a clean and sustainable generation of hydrogen from PEC water-splitting. These findings are of significant importance to improve the charge collection efficiency by minimizing electron-hole recombination observed at back-contact interfaces and grain boundaries in mesoporous electrodes, thus improving the overall efficiency and scalability of low-cost PEC water splitting devices.

Key words: Nanostructure, Iron oxide, Water oxidation, Photoanode, Surface engineering, Chemical synthesis