催化学报 ›› 2021, Vol. 42 ›› Issue (8): 1241-1252.DOI: 10.1016/S1872-2067(20)63767-6
Shunichi Fukuzumia,b,*(), Yong-Min Leea,c,#(
), Wonwoo Nama,$(
)
收稿日期:
2020-12-22
接受日期:
2021-01-22
出版日期:
2021-08-18
发布日期:
2021-03-18
通讯作者:
Shunichi Fukuzumi,Yong-Min Lee,Wonwoo Nam
作者简介:
$电子信箱:E-mail: wwnam@ewha.ac.kr
Shunichi Fukuzumia,b,*(), Yong-Min Leea,c,#(
), Wonwoo Nama,$(
)
Received:
2020-12-22
Accepted:
2021-01-22
Online:
2021-08-18
Published:
2021-03-18
Contact:
Shunichi Fukuzumi,Yong-Min Lee,Wonwoo Nam
About author:
$. E-mail: wwnam@ewha.ac.krSupported by:
摘要:
过氧化氢既可用作环境友好的绿色氧化剂, 也可用作燃料电池中的太阳能燃料, 因而受到越来越多的关注. 本文综述了太阳能驱动分子氧氧化水制备过氧化氢及其作为绿色氧化剂和燃料的研究进展. 利用太阳能将水的2e ‒和4e ‒氧化与分子氧的2e ‒还原相结合, 使光催化生产过氧化氢成为可能; 本文讨论了与2e ‒和4e ‒水氧化选择性及2e ‒和4e ‒氧还原选择性相关的催化反应控制. 由于光催化2e ‒氧化水和2e ‒还原分子氧的过程都产生过氧化氢, 因此该组合的催化效率较高. 太阳能光驱动水氧化及分子氧还原生产过氧化氢与过氧化氢催化氧化底物相结合, 在该过程中分子氧用作最环保的氧化剂.
Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. 过氧化氢生产与利用的新进展[J]. 催化学报, 2021, 42(8): 1241-1252.
Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. Recent progress in production and usage of hydrogen peroxide[J]. Chinese Journal of Catalysis, 2021, 42(8): 1241-1252.
Fig. 1. (a) Time profiles of photodriven H2O2 production under illumination (λ > 420 nm) of an O2-saturated aqueous solution containing [RuII(4,7-Me2phen)3]2+ (0.20 mM), ScIII(NO3)3 (0.10 M) and NiFe2O4 NPs (0.17 g/L) with diameters of 1300 (black), 120 (blue) and 91 nm (red); (b) Time profile of photodriven H2O2 production under illumination (λ > 420 nm) of an O2-saturated aqueous solution containing Ru(II) (0.20 mM), ScIII(NO3)3 (0.10 M) and NiFe2O4 NPs (0.17 g/L). Ru(II) complex was added to the reaction solution at 50 and 100 h during the visible-light-driven H2O2 production. Reproduced from Ref. [66] with permission from Royal Society of Chemistry (Copyright 2015).
Scheme 1. Photodriven 4e- H2O oxidation combined with 2e- O2 reduction to produce H2O2 with WOC and [Ru(4,7-Me2phen)3]2+ as a photocatalyst. Reproduced from Ref. [50] with permission from Royal Society of Chemistry (Copyright 2013).
Scheme 2. Photocatalytic cycle of photodriven H2O2 production by oxidation of H2O by O2 with Ni(II)[Ru(II)(CN)4(bpy)]. Reproduced from Ref. [68] with permission from Royal Society of Chemistry (Copyright 2017).
Scheme 3. Photocatalytic water oxidation by O2 to H2O2 by double photoexcitation. Reproduced from Ref. [69] with permission from Royal Society of Chemistry (Copyright 2016).
Fig. 2. A two-compartment cell employed for photocatalytic H2O2 production by combining the photocatalytic H2O oxidation and the photocatalytic 2e-/2H+ O2 reduction under visible light illumination. Reproduced from Ref. [69] with permission from Royal Society of Chemistry (Copyright 2016).
Scheme 4. Solar-light-driven H2O2 production with FeO(OH)/ BiVO4/FTO photoanode and CoII(Ch)/CP cathode in water or seawater under simulated 1 sun (AM 1.5G) irradiation. Reproduced from Ref. [79] with permission from American Chemical Society (Copyright 2016).
Scheme 5. (a) Three-dimensional structure; (b) Electronic band structure of g-C3N4/PDI (containing 51% PDI unit); (c) Photocatalytic cycle for H2O2 production from H2O and O2 with g-C3N4/PDI. Reproduced from Ref. [98] with permission from American Chemical Society (Copyright 2016).
Fig. 3. (A) Photoanode and cathode for photoelectrochemical water splitting to H2O2 and H2. (B) Energy diagram of photoelectrocatalytic production of H2O2 and H2 using a WO3/BiVO4 photoanode under solar-light illumination. Reproduced from Ref. [110] with permission from Royal Society of Chemistry (Copyright 2016).
Scheme 6. Proposed mechanism of the photocatalytic oxidation of H2O by DDQ with [(N4Py)FeII]2+ to evolve O2. Reproduced from Ref. [102] with permission from American Chemical Society (Copyright 2019).
Scheme 7. A membraneless one-compartment H2O2 fuel cell in which the anode (2e-/2H+ H2O2 oxidation) and cathode (2e-/2H+ H2O2 reduction) reactions afford the output potential of 1.09 V. Reproduced from Ref. [113] with permission from Royal Society of Chemistry (Copyright 2015).
Fig. 4. A photoelectrode system for production of H2O2 via the 2e-/2H+ H2O oxidation on a WO3/BiVO4 photoanode combined with the 2e-/2H+ O2 reduction on an Au cathode under solar-light illumination. Reproduced from Ref. [111] with permission from John WILEY and Sons (Copyright 2017).
Fig. 5. (A) Reaction diagram of photocatalytic production of H2O2; (B) Composite electrode supported WO3/BiVO4 and Au on a single FTO substrate; (C) Solar-light-driven production of H2O2 on the composite electrode under simulated solar-light illumination in H2O containing KHCO3 (2.0 M) at below 5 °C under O2 and CO2 bubbling with use of a petri dish as a cell; (D) Reaction diagram of photocatalytic production of H2O2 on an Au-supported BiVO4 powder in H2O containing KHCO3 (2.0 M) under O2 and CO2 bubbling. Reproduced from Ref. [111] with permission from John WILEY and Sons (Copyright 2017).
Fig. 6. Plots of I-V (blue) and I-P (red) of a one-compartment H2O2 fuel cell with a FeII3[CoIII(CN)6]2/carbon cloth cathode and a Ni mesh anode. Performance tests were carried out in a pH 1.3 aqueous solution, which was transferred from the CoII(Ch)/CP cathode cell of the two- compartment cells containing 52 mM of H2O2 produced by photocatalytic H2O oxidation by O2 (see also Scheme 4). Reproduced from Ref. [79] with permission from American Chemical Society (Copyright 2016).
Scheme 8. Proposed mechanism of photocatalytic hydroxylation of benzene by combining photodriven production of H2O2 via 4e-/4H+ H2O oxidation and 2e-/2H+ O2 reduction with benzene hydroxylation by H2O2 using [RuII(4,7-Me2phen)3]2+ as a photocatalyst and [(Cp*)CoIII(bpy)(H2O)]2+ as a dual function catalyst for the 4e-/4H+ oxidation of water and hydroxylation of benzene. Reproduced from Ref. [129] with permission from Royal Society of Chemistry (Copyright 2017).
Scheme 9. Coupling of photo- and thermal catalysis by FeII2[RuII(CN)6]@sAl-MCM-41 for photocatalytic hydroxylation of benzene by O2 with H2O. Reproduced from Ref. [133] with permission from American Chemical Society (Copyright 2016).
Fig. 8. External bias-free, PEC H2O2 production by oxidation of H2O by O2 with use of an FeOOH/BiVO4/CIGS solar cell in tandem and CN/rGO film electrode under photoirradiation for chemo- and stereospecific conversion of ethylbenzene to obtain (R)-1-phenylethanol catalyzed by AaeUPO. Reproduced from Ref. [134] with permission from American Chemical Society (Copyright 2019).
|
[1] | 石靖, 郭煜华, 谢飞, 章名田, 张洪涛. 氧化还原活性配体的电子效应对钌催化水氧化反应的影响[J]. 催化学报, 2023, 52(9): 271-279. |
[2] | 冯坚信, 李轩, 罗宇成, 苏志芳, 钟茂灵, 余宝蓝, 石建英. 金属有机框架载体内Ru(bda)L2催化剂微环境的调控实现高效光驱动水氧化[J]. 催化学报, 2023, 48(5): 127-136. |
[3] | 吴优, 杨祎, 谷苗莉, 别传彪, 谭海燕, 程蓓, 许景三. 用于改进H2O2制备的1D/0D异质结的ZnIn2S4@ZnO S型光催化剂[J]. 催化学报, 2023, 53(10): 123-133. |
[4] | 齐静, 陈明星, 张伟, 曹睿. 不对称配位磷酸钴铵增强电催化水氧化反应性能[J]. 催化学报, 2022, 43(7): 1955-1962. |
[5] | Karen Cristina Bedin, Beatriz Mouriño, Ingrid Rodríguez-Gutiérrez, João Batista Souza Junior, Gabriel Trindade dos Santos, Jefferson Bettini, Carlos Alberto Rodrigues Costa, Lionel Vayssieres, Flavio Leandro Souza. 基于溶液化学策略构建背接触FTO/赤铁矿光阳极界面工程的高效光催化水氧化研究[J]. 催化学报, 2022, 43(5): 1247-1257. |
[6] | 李婧宇, 祁明雨, 徐艺军. 超薄Ni掺杂ZnIn2S4纳米片用于光催化醇裂解同时制备C-C耦合产物及氢气[J]. 催化学报, 2022, 43(4): 1084-1091. |
[7] | 高学庆, 刘肖梦, 杨树姣, 张伟, 林海平, 曹睿. 黑磷夹层氧化钴纳米片构筑电催化水氧化的仿生通道[J]. 催化学报, 2022, 43(4): 1123-1130. |
[8] | 江梓聪, 张勇, 张留洋, 程蓓, 王临曦. 焙烧温度对氧化锌纳米棒光催化生产H2O2活性的影响[J]. 催化学报, 2022, 43(2): 226-233. |
[9] | 刘珍, 田坚, 余长林, 樊启哲, 刘兴强. 溶剂热合成可调控氧空位的Bi2MoO6纳米晶及其光催化氧化制喹啉和抗生素降解[J]. 催化学报, 2022, 43(2): 472-484. |
[10] | 张瑜, 张玲, 曾滴, 王文婧, 王举雪, 王伟民, 王文中. 富氧石墨相氮化碳在磷酸钠溶液中高效光催化合成过氧化氢[J]. 催化学报, 2022, 43(10): 2690-2698. |
[11] | 曾辉炎, 曾衍铨, 漆俊, 顾龙, 洪恩纳, 司锐, 杨纯臻. 析氧反应中催化剂-电解质界面的质子动力学研究[J]. 催化学报, 2022, 43(1): 139-147. |
[12] | 张学鹏, 王红艳, 郑浩铨, 张伟, 曹睿. 分子催化剂催化水氧化过程及其O-O成键机理[J]. 催化学报, 2021, 42(8): 1253-1268. |
[13] | 陈齐发, 杜昊易, 章名田. 缓冲溶液阴离子对三价铜催化剂催化水氧化过程的影响[J]. 催化学报, 2021, 42(8): 1338-1344. |
[14] | 黄远, 王建军, 邹杨, 蒋立文, 刘晓龙, 江文杰, 刘宏, 胡劲松. 选择性硒掺杂提高NiFe2O4/NiOOH异质结电催化析氧性能[J]. 催化学报, 2021, 42(8): 1395-1403. |
[15] | Jafar Hussain Shah, Anum Shahid Malik, Ahmed Mahmoud Idris, Saadia Rasheed, 韩洪宪, 李灿. Mn掺杂的铁电半导体BiFeO3本征光催化氧化水活性的研究[J]. 催化学报, 2021, 42(6): 945-952. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||