催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2690-2698.DOI: 10.1016/S1872-2067(22)64114-7

• 论文 • 上一篇    下一篇

富氧石墨相氮化碳在磷酸钠溶液中高效光催化合成过氧化氢

张瑜a,b, 张玲a, 曾滴a,b, 王文婧a, 王举雪a,b, 王伟民a, 王文中a,b,c,*()   

  1. a中国科学院上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
    b中国科学院大学材料科学与光电子工程研究中心, 北京 100049
    c中国科学院大学杭州高等研究院, 化学与材料科学学院, 浙江杭州 310024
  • 收稿日期:2022-03-14 接受日期:2022-04-13 出版日期:2022-10-18 发布日期:2022-09-30
  • 通讯作者: 王文中
  • 基金资助:
    国家自然科学基金(51972325);国家自然科学基金(51972327);国家自然科学基金(52172256)

An efficient strategy for photocatalytic hydrogen peroxide production over oxygen-enriched graphitic carbon nitride with sodium phosphate

Yu Zhanga,b, Ling Zhanga, Di Zenga,b, Wenjing Wanga, Juxue Wanga,b, Weimin Wanga, Wenzhong Wanga,b,c,*()   

  1. aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    cSchool of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
  • Received:2022-03-14 Accepted:2022-04-13 Online:2022-10-18 Published:2022-09-30
  • Contact: Wenzhong Wang
  • Supported by:
    National Natural Science Foundation of China(51972325);National Natural Science Foundation of China(51972327);National Natural Science Foundation of China(52172256)

摘要:

过氧化氢是一种重要的化工原料, 广泛应用于杀菌、漂白、燃料电池、化工生产、环境修复等领域. 目前工业生产过氧化氢以蒽醌法为主, 但多步蒽醌氧化工艺存在能耗高和污染环境等不足. 因此, 急需开发一种低能耗且环境友好的过氧化氢合成工艺. 光催化是一种理想的过氧化氢合成方法, 该方法以太阳光作为能源, 水或氧气作为原料, 在绿色、温和的条件下实现过氧化氢的生产.

本文制备了一种含有氮空位的富氧石墨相氮化碳(OCN), 并考察了其光催化生产过氧化氢的性能. 以空气中的氧气为原料, OCN光催化剂在可见光照射下高效合成了过氧化氢, 产率为1965 μmol L-1 h-1. 通过将磷酸钠引入反应体系, 进一步提高了过氧化氢的产率, 产率最高可达5781 μmol L-1 h-1.

本文在光催化性能测试的基础上, 还通过一系列表征手段研究了OCN高效生产过氧化氢的机理. X射线光电子能谱和傅里叶红外光谱研究表明, OCN表面存在含氧官能团(-COOH和C-O-C). 电子顺磁共振谱证明OCN中含有大量的氮空位. 氧气程序升温脱附、透射电子显微镜、氮气等温吸附脱附曲线、稳态荧光光谱和电化学分析结果表明, OCN较好的光催化性能归因于氧气吸附能力增强、片层结构减小、比表面积增大以及载流子分离效率提高. 过氧化氢产率的进一步提高归因于反应体系中活性氧物种的改变, 本文通过EPR测试验证了在不同反应条件下反应体系中产生的活性氧物种, 并提出可能的反应机理: 含氧官能团作为光催化反应的活性位点促进了OCN表面对氧气的吸附和活化, 可见光激发下OCN产生光生电子和空穴, 光生电子将OCN表面吸附的氧气还原为超氧自由基; 带负电的磷酸根吸附在OCN的表面, 通过静电吸引力促进光生空穴向催化剂表面迁移, 迁移到OCN表面的光生空穴与相邻的超氧自由基反应产生单线态氧; 单线态氧与异丙醇快速反应得到产物过氧化氢. 此外, 磷酸根作为稳定剂能够抑制H2O2分解. 综上, 本文设计了一种用于高效合成过氧化氢的光催化剂, 并为光催化过氧化氢合成的反应路径提供了新的理解和认识.

关键词: 光催化, 过氧化氢生产, 石墨相氮化碳, 单线态氧, 磷酸钠

Abstract:

Photocatalytic hydrogen peroxide (H2O2) production is a promising strategy to replace the traditional production processes; however, the inefficient H2O2 productivity limits its application. In this study, oxygen-rich g-C3N4 with abundant nitrogen vacancies (OCN) was synthesized for photocatalytic H2O2 production. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that oxygen-containing functional groups (-COOH and C-O-C) were obtained. Electron paramagnetic resonance confirmed the successful introduction of nitrogen vacancies. OCN exhibited efficient photocatalytic H2O2 production performance of 1965 µmol L-1 h-1 in air under visible-light irradiation. The high H2O2 production was attributed to the enhanced adsorption of oxygen, enlarged specific surface area, and promoted carrier separation. An increased H2O2 production rate (5781 µmol L-1 h-1) was achieved in a Na3PO4 solution. The improved performance was attributed to the changed reactive oxygen species. Specifically, the adsorbed PO43- on the surface of the OCN promoted the transfer of holes to the catalyst surface. •O2- obtained by O2 reduction reacted with adjacent holes to generate 1O2, which could efficiently generate H2O2 with isopropanol. Additionally, PO43-, as a stabilizer, inhibited the decomposition of H2O2.

Key words: Photocatalysis, Hydrogen peroxide production, Graphitic carbon nitride, Singlet oxygen, Sodium phosphate