催化学报 ›› 2024, Vol. 67: 21-53.DOI: 10.1016/S1872-2067(24)60153-1

• 综述 • 上一篇    下一篇

非衍生金属有机框架纳米片电解水催化剂: 基础理论、调控策略和最新进展

郭英杰a,b, 李世龙a,b, 王竞洋b, 石磊b(), 刘迪a(), 赵慎龙b,c()   

  1. a中国矿业大学(北京)化学与环境工程学院, 北京 100083
    b中国科学院纳米系统与多级次制造重点实验室, 中国科学院纳米科学卓越创新中心,国家纳米科学中心, 北京 100190
    c中国科学院大学, 北京 101408
  • 收稿日期:2024-07-02 接受日期:2024-09-24 出版日期:2024-11-30 发布日期:2024-11-30
  • 通讯作者: 石磊,刘迪,赵慎龙
  • 基金资助:
    国家自然科学基金(22373027);中央高校基本研究经费(2023ZKPYHH05)

Non-derivatized metal-organic framework nanosheets for water electrolysis: Fundamentals, regulation strategies and recent advances

Yingjie Guoa,b, Shilong Lia,b, Wasihun Abebeb, Jingyang Wangb, Lei Shib(), Di Liua(), Shenlong Zhaob,c()   

  1. aSchool of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
    bCAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
    cUniversity of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2024-07-02 Accepted:2024-09-24 Online:2024-11-30 Published:2024-11-30
  • Contact: Lei Shi, Di Liu, Shenlong Zhao
  • About author:Lei Shi (National Center for Nanoscience and Technology) received his Ph.D. degree from Beijing University of Chemical Technology in 2022. Currently, He is a postdoctoral fellow in National Center for Nanoscience and Technology. His research interests focus on the MOF and COF-based nanomaterials for water electrolysis, electrochemical CO2 reduction and small molecule electrooxidation.
    Di Liu (China University of Mining and Technology (Beijing)) received her B.S. degree from Shandong University in 2011 and Ph.D. degree from Tsinghua University in 2016. She is currently an associate professor in China University of Mining and Technology (Beijing). Her current research is focused on the rational synthesis and mechanism exploration of perylene diimide (PDI)-based organic semiconductor materials for visible-light-driven photocatalysis and photoelectrocatalysis.
    Shenlong Zhao (National Center for Nanoscience and Technology, Chinese Academy of Science) received his B.E. degree from Shandong University in 2011. He obtained his Ph.D. degree from the Harbin Institute of Technology and the National Center for Nanoscience and Technology in 2017. And then, he was a postdoctoral fellow in the University of New South Wales and a FH Loxton Research Fellow in the University of Sydney. Currently, He is a professor/principal investigator in National Center for Nanoscience and Technology. His research interests focus on the preparation and application of functional inorganic and organic carbon nanomaterials for energy conversion and storage.
  • Supported by:
    National Natural Science Foundation of China(22373027);Fundamental Research Funds for the Central Universities(2023ZKPYHH05)

摘要:

随着全球能源需求的增加和环境问题的日益严峻, 开发清洁可再生能源已成为全球可持续发展的核心任务. 电解水制氢是实现绿色氢能生产的重要途径之一, 而催化剂的效率直接决定了电解水的反应性能. 传统贵金属催化剂虽然表现出优异的催化活性, 但高昂的成本和资源稀缺性限制了其大规模应用. 金属有机框架(MOF)材料具有独特的可调控结构和丰富的活性位点, 成为替代贵金属催化剂的理想候选之一. 尤其是非衍生MOF纳米片(MOFNSs), 其二维结构具有较大的比表面积和更高的活性中心暴露率, 在电解水反应中展现出显著优势. 因此, 研究非衍生MOF纳米片的基础理论和调控策略, 对于推动高效、经济的电解水技术至关重要.

非衍生MOFNSs在电解水中的应用潜力巨大, 本文从机理研究、结构表征、调控策略和最新进展四个方面系统地总结了该领域的基础理论与研究成果. 在电解水反应机制方面, 非衍生MOFNSs具有明确的结构为机理研究提供了理想的研究平台. 为进一步理解MOFNSs的结构-活性关系, 各种表征技术被广泛应用. 结构表征涉及高分辨透射电子显微镜、X射线吸收精细结构等先进技术, 用于研究MOFNSs的晶体结构、活性位点分布及其在电催化反应过程中的结构演变. 通过这些技术, 研究者能够深入探讨材料的微观结构与宏观催化性能之间的关系, 揭示催化活性来源, 并实现对催化剂设计的反馈优化. 在调控策略方面, 总结了多种提升MOFNSs催化性能的有效手段, 包括金属节点调控、配体设计、缺陷工程、复合工程以及其他策略. 通过调节电荷转移路径和活性位点性质选择金属节点, 显著影响催化性能; 而通过引入不同功能基团调节MOF的电子结构和孔径设计配体, 提升了活性位点的暴露和电子传导性. 此外, 缺陷工程通过引入氧空位或金属空位, 创造了更多未配位的活性位点, 提高了反应物吸附和电荷转移效率. 复合材料的设计则通过将MOFNSs与其他功能材料结合, 增强材料整体催化活性和稳定性. 除了常见设计策略外, 近期还涌现出许多新兴的改进方法以提升其电催化性能. 同时, 结合二维材料、无定形材料等新兴领域的研究, 也为开发高效、稳定的电催化剂提供了新思路. 在最新进展中, 研究者开发了多种MOFNSs催化剂, 在电解水反应中表现出较好的性能. 通过高效合成方法制备的MOFNSs表现出显著降低的过电位和较好的长时间稳定性, 同时在析氧反应和析氢反应中表现出较强的双功能催化能力. 通过先进的催化剂设计和表征技术, 研究进一步揭示了MOFNSs的反应机理, 优化了其在水分解过程中的应用潜力. 整体而言, 非衍生MOFNSs在电解水方面具有广阔的应用前景.

综上, 本文的系统总结为未来高效MOFNSs催化剂的设计与开发提供了重要的理论与实践参考. 未来的研究需在大规模生产、工业电流密度下的稳定性, 以及酸性电解质和海水电解方面继续突破. 通过先进表征以及人工智能的助力, 非衍生MOFNSs将进一步被优化, 并推动电解水技术向更高效、可持续方向发展.

关键词: 金属有机框架纳米片, 电催化, 水分解, 析氧反应, 析氢反应

Abstract:

Water splitting powered by clean electricity is a sustainable and promising approach to produce green hydrogen. Currently, noble metal (e.g. Iridium, Ruthenium, Platinum)-based catalysts are most widely used for water splitting electrolysis. However, noble metal-based catalysts often suffer from multiple disadvantages, including high cost, low selectivity and poor durability. The emergence of metal-organic framework nanosheets (MOFNSs) attracts significant attention due to their unique advantages. Here, a concise, yet comprehensive and critical, review of recent advances in the field of MOFNSs is provided. This review explains the fundamental oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalytic mechanisms as well as key characterization techniques for the structure-activity relationship study are discussed. Moreover, it discusses efficient design strategies and the brief research advances of MOFNSs in HER, OER, and bifunctional electrocatalysis, along with some challenges and opportunities.

Key words: Metal-organic framework nanosheets, Electrocatalysis, Water splitting, Oxygen evolution reaction, Hydrogen evolution reaction