催化学报 ›› 2024, Vol. 67: 21-53.DOI: 10.1016/S1872-2067(24)60153-1
郭英杰a,b, 李世龙a,b, 王竞洋b, 石磊b(), 刘迪a(
), 赵慎龙b,c(
)
收稿日期:
2024-07-02
接受日期:
2024-09-24
出版日期:
2024-11-30
发布日期:
2024-11-30
通讯作者:
石磊,刘迪,赵慎龙
基金资助:
Yingjie Guoa,b, Shilong Lia,b, Wasihun Abebeb, Jingyang Wangb, Lei Shib(), Di Liua(
), Shenlong Zhaob,c(
)
Received:
2024-07-02
Accepted:
2024-09-24
Online:
2024-11-30
Published:
2024-11-30
Contact:
Lei Shi, Di Liu, Shenlong Zhao
About author:
Lei Shi (National Center for Nanoscience and Technology) received his Ph.D. degree from Beijing University of Chemical Technology in 2022. Currently, He is a postdoctoral fellow in National Center for Nanoscience and Technology. His research interests focus on the MOF and COF-based nanomaterials for water electrolysis, electrochemical CO2 reduction and small molecule electrooxidation.Supported by:
摘要:
随着全球能源需求的增加和环境问题的日益严峻, 开发清洁可再生能源已成为全球可持续发展的核心任务. 电解水制氢是实现绿色氢能生产的重要途径之一, 而催化剂的效率直接决定了电解水的反应性能. 传统贵金属催化剂虽然表现出优异的催化活性, 但高昂的成本和资源稀缺性限制了其大规模应用. 金属有机框架(MOF)材料具有独特的可调控结构和丰富的活性位点, 成为替代贵金属催化剂的理想候选之一. 尤其是非衍生MOF纳米片(MOFNSs), 其二维结构具有较大的比表面积和更高的活性中心暴露率, 在电解水反应中展现出显著优势. 因此, 研究非衍生MOF纳米片的基础理论和调控策略, 对于推动高效、经济的电解水技术至关重要.
非衍生MOFNSs在电解水中的应用潜力巨大, 本文从机理研究、结构表征、调控策略和最新进展四个方面系统地总结了该领域的基础理论与研究成果. 在电解水反应机制方面, 非衍生MOFNSs具有明确的结构为机理研究提供了理想的研究平台. 为进一步理解MOFNSs的结构-活性关系, 各种表征技术被广泛应用. 结构表征涉及高分辨透射电子显微镜、X射线吸收精细结构等先进技术, 用于研究MOFNSs的晶体结构、活性位点分布及其在电催化反应过程中的结构演变. 通过这些技术, 研究者能够深入探讨材料的微观结构与宏观催化性能之间的关系, 揭示催化活性来源, 并实现对催化剂设计的反馈优化. 在调控策略方面, 总结了多种提升MOFNSs催化性能的有效手段, 包括金属节点调控、配体设计、缺陷工程、复合工程以及其他策略. 通过调节电荷转移路径和活性位点性质选择金属节点, 显著影响催化性能; 而通过引入不同功能基团调节MOF的电子结构和孔径设计配体, 提升了活性位点的暴露和电子传导性. 此外, 缺陷工程通过引入氧空位或金属空位, 创造了更多未配位的活性位点, 提高了反应物吸附和电荷转移效率. 复合材料的设计则通过将MOFNSs与其他功能材料结合, 增强材料整体催化活性和稳定性. 除了常见设计策略外, 近期还涌现出许多新兴的改进方法以提升其电催化性能. 同时, 结合二维材料、无定形材料等新兴领域的研究, 也为开发高效、稳定的电催化剂提供了新思路. 在最新进展中, 研究者开发了多种MOFNSs催化剂, 在电解水反应中表现出较好的性能. 通过高效合成方法制备的MOFNSs表现出显著降低的过电位和较好的长时间稳定性, 同时在析氧反应和析氢反应中表现出较强的双功能催化能力. 通过先进的催化剂设计和表征技术, 研究进一步揭示了MOFNSs的反应机理, 优化了其在水分解过程中的应用潜力. 整体而言, 非衍生MOFNSs在电解水方面具有广阔的应用前景.
综上, 本文的系统总结为未来高效MOFNSs催化剂的设计与开发提供了重要的理论与实践参考. 未来的研究需在大规模生产、工业电流密度下的稳定性, 以及酸性电解质和海水电解方面继续突破. 通过先进表征以及人工智能的助力, 非衍生MOFNSs将进一步被优化, 并推动电解水技术向更高效、可持续方向发展.
郭英杰, 李世龙, 王竞洋, 石磊, 刘迪, 赵慎龙. 非衍生金属有机框架纳米片电解水催化剂: 基础理论、调控策略和最新进展[J]. 催化学报, 2024, 67: 21-53.
Yingjie Guo, Shilong Li, Wasihun Abebe, Jingyang Wang, Lei Shi, Di Liu, Shenlong Zhao. Non-derivatized metal-organic framework nanosheets for water electrolysis: Fundamentals, regulation strategies and recent advances[J]. Chinese Journal of Catalysis, 2024, 67: 21-53.
Fig. 1. Main progress of MOFNSs for water electrolysis. Reproduced with permission from Ref. [25]. Copyright 2015, American Chemical Society; Ref. [26]. Copyright 2016, Nature Publishing Group; Ref. [16]. Copyright 2017, Nature Publishing Group; Ref. [151]. Copyright 2018, Wiley-VCH; Ref. [130]. Copyright 2019, Wiley-VCH; Ref. [18]. Copyright 2020, Nature Publishing Group; Ref. [132]. Copyright 2021, Nature Publishing Group; Ref. [115]. Copyright 2022, Nature Publishing Group; Ref. [50]. Copyright 2023, Wiley-VCH.
Fig. 2. Schematic diagram of the OER reaction path proposed in the previous study in alkaline: (A) AEM; (B) LOM; (C) OPM. (D) Volmer-Tafel and Volmer-Heyrovsky mechanisms of HER in alkaline and acidic condition. (E) Volcano plot of exchange current density as a function of the DFT-calculated Gibb's free energy (ΔGH*) of the adsorbed atomic hydrogen on a pure metal. Reproduced with permission from Ref. [41]. Copyright 2018, Royal Society of Chemistry.
Fig. 3. (A) Schematic diagram of technical principle. Reproduced with permission from Ref. [48]. Copyright 2022, Multidisciplinary Digital Publishing Institute. (B) Single-atom contrast in the range Z = 1-103 obtained by simulations iDPC-STEM image. Reproduced with permission from Ref. [49]. Copyright 2016, Elsevier. (C) IDPC-STEM images and GPA of Ni-BDC. Reproduced with permission from Ref. [50]. Copyright 2023, Wiley-VCH. (D) Simultaneous detection of SAXS and WAXS. (E) GIWAXS of UiO-66 on UiO-67 heterostructures. Reproduced with permission from Ref. [53]. Copyright 2023, Wiley-VCH. SAXS (F) and EXAFS (G) characterization of NiCo-UMOFNs. Reproduced with permission from Ref. [26]. Copyright 2016, Nature Publishing Group. (H) Schematic illustration of electrocatalytic water splitting. Reproduced with permission from Ref. [33]. Copyright 2020, Royal Society of Chemistry. (I) Typical polarization curves for HER (left) and OER (right). Reproduced with permission from Ref. [54]. Copyright 2017, Wiley-VCH.
Fig. 4. (A) In situ probing map of various representative in situ techniques. Reproduced with permission from Ref. [73]. Copyright 2020, American Chemical Society. Schema of in-situ Raman spectroscopy (B), in-situ mass spectroscopy (C), in-situ X-ray absorption spectroscopy (D), and in-situ transmission electron microscopy (E). Reproduced with permission from Ref. [76]. Copyright 2020, Royal Society of Chemistry. (F) Enhancing the connection between computation and experiments in electrocatalysis. Reproduced with permission from Ref. [79]. Copyright 2022, Nature Publishing Group. (G) Information theoretic methods in DFT and applications to chemical problems. Reproduced with permission from Ref. [80]. Copyright 2020, Wiley-VCH.
Fig. 5. (A) Operando SR-FTIR measurements of 4.3%-MOF at different potentials. (B) FTIR signal at 1048 cm-1 and Ni4+/Ni2+ ratio versus potential during ORR and OER. Reproduced with permission from Ref. [81]. Copyright 2019, Nature Publishing Group. (C) In situ FTIR spectra of bulk CuBDC at 150 °C. Reproduced with permission from Ref. [82]. Copyright 2024, Wiley-VCH. (D) Electrochemical in situ Raman spectra of Ni0.9Fe0.1-MOF and Ni-MOF in the range of 350-700 cm−1 at operated potentials from 1.1 to 1.67 V vs. RHE. Reproduced with permission from Ref. [83]. Copyright 2022, Elsevier. (E) Ni K-edge Fourier-transformed k3-weighted EXAFS signals recorded at different potentials in 1 mol L-1 KOH. (F) comparison of Ni K-edge EXAFS WTs recorded for the pristine sample, standard references and catalytic materials at 1.1, 1.3 and 1.5?V. Reproduced with permission from Ref. [18]. Copyright 2020, Nature Publishing Group.
Fig. 6. (A) Different metal nodes in the MOF crystal structure. Reproduced with permission from Ref. [91]. Copyright 2021, Wiley-VCH. (B) Strategies to construct stable MOFs guided by HSAB theory. Reproduced with permission from Ref. [92]. Copyright 2018, Wiley-VCH.
Fig. 7. Synthesis (A), molecular and crystal structure schematic diagrams (B) and Co 2p XPS spectrum (C) of ultrathin 2D Co-MOF nanosheet catalysts. Reproduced with permission from Ref. [89]. Copyright 2018, Royal Society of Chemistry. (D) Synthesis. AFM (E) and S 2p XPS spectrum (F) of the 2DSP single-layer sheet. Reproduced with permission from Ref. [93]. Copyright 2015, Wiley-VCH. (G) Scheme of the cobalt dithiolene films. Reproduced with permission from Ref. [94]. Copyright 2015, American Chemical Society. (H) Schematic illustration, synthesis and photograph of the structure of the 2D coordination polymers. Reproduced with permission from Ref. [95]. Copyright 2017, American Chemical Society. (I) Surfactant-assisted phase-selective synthesis of new cobalt MOFs. Reproduced with permission from Ref. [96]. Copyright 2017, Wiley-VCH.
Fig. 8. Crystal structure (A) and AFM image (B) of NiCo-UMOFNs. (C) Schematic representation of the electronic coupling between Co and Ni in UMOFNs. Reproduced with permission from Ref. [26]. Copyright 2016, Nature Publishing Group. (D) Schematic illustration of the 2D oxide sacrifice approach conversion of M-ONS with 2,5-dihydroxyterephthalic acid to form M-MNS. Reproduced with permission from Ref. [90]. Copyright 2019, Wiley-VCH. (E) Comparison of the overpotentials required for 10 mA cm-2 for substituted M (M = Fe, Co, Cu, Mn, and Zn) in Ni-MOFs. Reproduced with permission from Ref. [98]. Copyright 2021, Wiley-VCH.
Fig. 9. (A) Formation process of FeCo2Ni-MOF-74 at ambient temperature. (B) Catalytical reaction circle and active sites for FeCo2Ni-MOF-74 with rich Ovac. (C) DOS for various materials. Reproduced with permission from Ref. [99]. Copyright 2021, Elsevier. (D) Schematic illustration of microwave-assisted synthesis of ultrathin trimetal-organic framework nanosheets, (Reproduced with permission from Ref. [100]. Copyright 2021, Elsevier. Synthetic process (E), HRTEM image (scale bar is 5 nm) (F) and AFM image and corresponding height profile (G) of the 2D HE-MOFs array. (H) The overpotential testing at a current density of 50 mA cm-2 of overall samples under 1.0 mol L-1 KOH. Reproduced with permission from Ref. [101]. Copyright 2022, American Chemical Society.
Fig. 10. (A) Schematic illustration of 2D Co-MOFs with different organic ligands. (B) Bader charge transfer and magnetic moments of Co sites in different 2D Co-MOFs. Reproduced with permission from Ref. [106]. Copyright 2023, American Chemical Society. (C) Structural modelling of FeNi-MOFs modulated by halogen atoms. (D) Calculated PDOS and Ni-3d band center. (E) Ni K-edge XANES spectra. Reproduced with permission from Ref. [107]. Copyright 2024, Wiley-VCH. (F) Schematic representation for the formation of the self-supporting 2D Ni-MOF nanosheet electrode. Reproduced with permission from Ref. [110]. Copyright 2022, American Chemical Society. (G) 2D planar structure of Ni-MOF. Reproduced with permission from Ref. [114]. Copyright 2023, American Chemical Society.
Fig. 11. (A) HRTEM (top) and SEM (bottom) images of the pristine 1.7%-, 3.6%- and 4.3%-MOFs. (B) Fourier transforms of the Ni K-edge EXAFS spectra. Reproduced with permission from Ref. [81]. Copyright 2019, Nature Publishing Group. (C) Schematic illustration of the NaBH4 defect post-treatment. (D) DOS and the corresponding structures (inset) of Co-MOF and Co-MOF-VO. (E) Charge density mapping at [010] facet. Reproduced with permission from Ref. [118]. Copyright 2020, Wiley-VCH. (F) Electronic structure of MOF is regulated by a missing linker. Reproduced with permission from Ref. [119]. Copyright 2020, Wiley-VCH. (G) Modulating electronic structure and DOS of MOFs via introducing missing linkers. Reproduced with permission from Ref. [120]. Copyright 2019, Nature Publishing Group.
Fig. 12. (A) Schematic illustration of the formation of flexible lattice matching junction in MOF-on-MOF epitaxy. Reproduced with permission from Ref. [124]. Copyright 2014, American Chemical Society. (B) A representation of the combinations of three distinctive processes of MOF-on-MOF growth. Reproduced with permission from Ref. [125]. Copyright 2020, Wiley-VCH. (C) Illustration of the Synthesis Process of the FePc@Ni-MOF composite nanosheets. Reproduced with permission from Ref. [128]. Copyright 2021, American Chemical Society. (D) Hierarchical Ni3S2@2D Co MOF nanosheets as efficient hetero-electrocatalyst for hydrogen evolution reaction in alkaline solution. Reproduced with permission from Ref. [129]. Copyright 2022, Elsevier. (E) Schematic of the synthesis process for Co-BDC/MoS2 hybrid nanosheets. Reproduced with permission from Ref. [130]. Copyright 2019, Wiley-VCH. (F) Schematic illustration for the preparation of NiRu0.13-BDC catalyst. Reproduced with permission from Ref. [132]. Copyright 2021, Nature Publishing Group.
Fig. 13. (A) Models of optimized NiBDC and S-NiBDC. (B) Structure of active site for [FeFe]-hydrogenase, (C) PDOS of p-states for NiBDC and S-NiBDC models. (D) Polarization curves of S-NiBDC and Pt/C. (E) FESEM images of S-NiBDC after HER tests at different current densities. (F) In-situ Raman spectra of S-NiBDC at −0.3 V vs. RHE for different times. (G) In-situ ATR-FTIR spectra of S-NiBDC with the potential of 0 to −0.4?V vs. RHE. (H) Polarization curves of S-NiBDC in 1.0 mol L-1 NaOH H2O solution and 1.0 mol L-1 NaOD D2O solution. Reproduced with permission from Ref. [135]. Copyright 2022, Nature Publishing Group.
Number | Catalyst | η@10 mA cm-2/mV | Tafel slope/mV dec−1 | Condition | Stability | Ref. |
---|---|---|---|---|---|---|
1 | Ni3(Ni3·HAHATN)2 | 115 | 45.6 | 0.1 mol L−1 KOH | 1000 cycles | [113] |
2 | Co MOF/H2 | 30 | 88 | 1.0 mol L−1 KOH | 40 h@10 mA cm-2 | [140] |
3 | AB&CTGU-5 | 44 | 45 | 0.5 mol L−1 H2SO4 | 96 h@10 mA cm-2 | [96] |
4 | [Cu(2,5-pydc)(H2O)]n·2H2O | 340 | 70 | 1.0 mol L−1 KOH | 1000 cycles | [138] |
5 | NiFe-MOF-74 | 195 | 136 | 1.0 mol L−1 KOH | 5000 cycles | [141] |
6 | Ni3S2@2D Co-MOF/CP | 140 | 90.3 | 1.0 mol L−1 KOH | 2000 cycles | [129] |
7 | THTNi 2DSP | 333 | 80.5 | 0.5 mol L−1 H2SO4 | — | [93] |
8 | FePc@Ni-MOF | 334 | 72.1 | 0.1 mol L−1 KOH | 10 h@10 mA cm-2 | [128] |
9 | Pt-NC/Ni-MOF | 25 | 42.1 | 1.0 mol L−1 KOH | 10000 cycles | [142] |
10 | 2D Ni-MOF@Pt | 43 | 30 | 0.5 mol L−1 H2SO4 | — | [143] |
11 | MoS2/Co-MOF-3 | 262 | 51 | 0.5 mol L−1 H2SO4 | 25000 s@10 mA cm-2 | [137] |
12 | UiO-66-NH2-Mo/GC | 125 | 59 | 0.5 mol L−1 H2SO4 | 5000 cycles | [144] |
13 | THTA-Co | 283 | 71 | 0.5 mol L−1 H2SO4 | 400 cycles | [145] |
14 | 3ZIF-67-Pt/RGO | 14.3 | 12.5 | 0.5 mol L−1 H2SO4 | 1000 cycles | [146] |
15 | 3ZIF-67-Pt/RGO | 37.2 | 33.1 | 1.0 mol L−1 KOH | 1000 cycles | [146] |
16 | NiFe-MOF array | 68 | 112 | 1.0 mol L−1 KOH | 22 h@~550 mA cm-2 | [103] |
17 | AB&Co-Cl4-MOF(3:4) | 283 | 86 | 1.0 mol L−1 KOH | 1000 cycles | [136] |
18 | NiRu-MOF/NF | 51 | 90 | 1.0 mol L−1 KOH | 5000 cycles | [148] |
19 | D-Ni-MOF | 101 | 50.9 | 1.0 mol L−1 KOH | 1000 cycles | [120] |
20 | Co-BDC/MoS2 | 248 | 86 | 1.0 mol L−1 KOH | 2000 cycles | [130] |
21 | Fe(OH)x@Cu-MOF | 112 | 76 | 1.0 mol L−1 KOH | 30 h@10 mA cm-2 | [139] |
22 | Ce-MOF@Pt-0.05 | 208 | 188.1 | 1.0 mol L−1 KOH | 3,000 cycles | [149] |
23 | CoP/Co-MOF | 52 | 44 | 0.5 mol L−1 H2SO4 | 20 h@20 mA cm-2 | [131] |
24 | S-NiBDC | 100 | 75 | 1.0 mol L−1 KOH | 150 h@1000 mA cm-2 | [135] |
25 | IF@CoFe-TDPAT NSA | 212.2 | 76.7 | 1.0 mol L−1 KOH | 24 h@300 mA cm-2 | [147] |
Table 1 MOFNSs for electrocatalytic HER in recent years.
Number | Catalyst | η@10 mA cm-2/mV | Tafel slope/mV dec−1 | Condition | Stability | Ref. |
---|---|---|---|---|---|---|
1 | Ni3(Ni3·HAHATN)2 | 115 | 45.6 | 0.1 mol L−1 KOH | 1000 cycles | [113] |
2 | Co MOF/H2 | 30 | 88 | 1.0 mol L−1 KOH | 40 h@10 mA cm-2 | [140] |
3 | AB&CTGU-5 | 44 | 45 | 0.5 mol L−1 H2SO4 | 96 h@10 mA cm-2 | [96] |
4 | [Cu(2,5-pydc)(H2O)]n·2H2O | 340 | 70 | 1.0 mol L−1 KOH | 1000 cycles | [138] |
5 | NiFe-MOF-74 | 195 | 136 | 1.0 mol L−1 KOH | 5000 cycles | [141] |
6 | Ni3S2@2D Co-MOF/CP | 140 | 90.3 | 1.0 mol L−1 KOH | 2000 cycles | [129] |
7 | THTNi 2DSP | 333 | 80.5 | 0.5 mol L−1 H2SO4 | — | [93] |
8 | FePc@Ni-MOF | 334 | 72.1 | 0.1 mol L−1 KOH | 10 h@10 mA cm-2 | [128] |
9 | Pt-NC/Ni-MOF | 25 | 42.1 | 1.0 mol L−1 KOH | 10000 cycles | [142] |
10 | 2D Ni-MOF@Pt | 43 | 30 | 0.5 mol L−1 H2SO4 | — | [143] |
11 | MoS2/Co-MOF-3 | 262 | 51 | 0.5 mol L−1 H2SO4 | 25000 s@10 mA cm-2 | [137] |
12 | UiO-66-NH2-Mo/GC | 125 | 59 | 0.5 mol L−1 H2SO4 | 5000 cycles | [144] |
13 | THTA-Co | 283 | 71 | 0.5 mol L−1 H2SO4 | 400 cycles | [145] |
14 | 3ZIF-67-Pt/RGO | 14.3 | 12.5 | 0.5 mol L−1 H2SO4 | 1000 cycles | [146] |
15 | 3ZIF-67-Pt/RGO | 37.2 | 33.1 | 1.0 mol L−1 KOH | 1000 cycles | [146] |
16 | NiFe-MOF array | 68 | 112 | 1.0 mol L−1 KOH | 22 h@~550 mA cm-2 | [103] |
17 | AB&Co-Cl4-MOF(3:4) | 283 | 86 | 1.0 mol L−1 KOH | 1000 cycles | [136] |
18 | NiRu-MOF/NF | 51 | 90 | 1.0 mol L−1 KOH | 5000 cycles | [148] |
19 | D-Ni-MOF | 101 | 50.9 | 1.0 mol L−1 KOH | 1000 cycles | [120] |
20 | Co-BDC/MoS2 | 248 | 86 | 1.0 mol L−1 KOH | 2000 cycles | [130] |
21 | Fe(OH)x@Cu-MOF | 112 | 76 | 1.0 mol L−1 KOH | 30 h@10 mA cm-2 | [139] |
22 | Ce-MOF@Pt-0.05 | 208 | 188.1 | 1.0 mol L−1 KOH | 3,000 cycles | [149] |
23 | CoP/Co-MOF | 52 | 44 | 0.5 mol L−1 H2SO4 | 20 h@20 mA cm-2 | [131] |
24 | S-NiBDC | 100 | 75 | 1.0 mol L−1 KOH | 150 h@1000 mA cm-2 | [135] |
25 | IF@CoFe-TDPAT NSA | 212.2 | 76.7 | 1.0 mol L−1 KOH | 24 h@300 mA cm-2 | [147] |
Fig. 14. (A) Illustration of the synthesis of bulk, 3D, and 2D MOFs. iR-corrected polarization curves for OER (B) and corresponding Tafel plots derived from the LSV curves (C). Reproduced with permission from Ref. [150]. Copyright 2021, Wiley-VCH. (D) Schematic illustration of the preparation of MOFNSs. (E) Coordination structure of CuBDC before and after thermal treatment and liquid nitrogen exfoliation. (F) SEM image of bulk CuBDC and 2D CuBDC after thermal treatment and liquid nitrogen exfoliation, Characterization of OER catalytic activity of different materials. Linear sweep voltametric curves and Tafel plots of bulk CuBDC and CuBDC-5 (G) and bulk NiBDC and NiBDC-5 (H). Reproduced with permission from Ref. [82]. Copyright 2024, Wiley-VCH.
Number | Catalyst | η@10 mA cm-2/mV | Tafel slope/mV dec−1 | Condition | Stability | Ref. |
---|---|---|---|---|---|---|
1 | Co3(HITP)2 | 254 | 86.5 | 1.0 mol L-1 KOH | 12 h@16 mA cm-2 | [162] |
2 | NiCo-UMOFNs | 250 | 42 | 1.0 mol L-1 KOH | 200 h@10 mA cm-2 | [26] |
3 | FeCo-MNS-1.0 | 298 | 21.6 | 0.1 mol L-1 KOH | 10000 s@~22 mA cm-2 | [90] |
4 | NiFe-MOF | 215 | 49.1 | 1.0 mol L-1 KOH | 40 h@10 mA cm-2 | [98] |
5 | FeCo2Ni-MOF-74 | 254 | 21.4 | 0.1 mol L-1KOH | 100 h@10 mA cm-2 | [99] |
6 | MW-Ni4Co4Fe2-UMOFNs | 243 | 48.1 | 1.0 mol L-1 KOH | 10 h@12 mA cm-2 | [100] |
7 | UNi-MOFNs-2 | 170 | 41 | 1.0 mol L-1 KOH | 3,000 cycles | [110] |
8 | NiFe-MOF NSs | 240 | 73.44 | 1.0 mol L-1 KOH | 16 h@10 mA cm-2 | [111] |
9 | Fe:2D-Co-NS@Ni | 211 | 46 | 0.1 mol L-1 KOH | 95 h@10 mA cm-2 | [86] |
10 | Ni-BPDC | 415 | 83 | 1.0 mol L-1 KOH | 20000 s@5 mA cm-2 | [114] |
11 | Ni-MOF | 370 | 101.9 | 0.1 mol L-1 KOH | 1000 cycles | [153] |
12 | Co-ZIF-9(III) | 380 | 55 | 1.0 mol L-1 KOH | 10 h@15 mA cm-2 | [85] |
13 | Ni-Fe-MOF | 221 | 56 | 1.0 mol L-1 KOH | 20 h@10 mA cm-2 | [154] |
14 | NiFe-UMNs | 260 | 30 | 1.0 mol L-1 KOH | 10000 s@60 mA cm-2 | [155] |
15 | Ni-MOF@Fe-MOF | 265 | 82 | 1.0 mol L-1 KOH | — | [151] |
16 | 2D CoFe-MOF | 355 | 49.05 | 0.1 mol L-1 KOH | 15 h@20 mA cm-2 | [156] |
17 | CoFe MOFNSs | 276 | 46.7 | 1.0 mol L-1 KOH | — | [157] |
18 | CoFe-MOF-OH | 265 | 44 | 1.0 mol L-1 KOH | 40 h@10 mA cm-2 | [158] |
19 | TMOF-4 | 318 | 54 | 1.0 mol L-1 KOH | 15 h@20 mA cm-2 | [159] |
20 | CoNi-MOF/rGO | 318 | 48 | 1.0 mol L-1 KOH | 50 h@10 mA cm-2 | [160] |
21 | CoBDC-Fc0.17 | 178 | 61 | 1.0 mol L-1 KOH | 80 h@100 mA cm-2 | [119] |
22 | CoNi(1:1)-MOF | 265 | 56 | 1.0 mol L-1 KOH | 20 h@25 mA cm-2 | [161] |
23 | IF@CoFe-TDPAT NSA | 226.4 | 30.8 | 1.0 mol L-1 KOH | 24 h@300 mA cm-2 | [147] |
Table 2 MOFNSs for electrocatalytic OER in recent years.
Number | Catalyst | η@10 mA cm-2/mV | Tafel slope/mV dec−1 | Condition | Stability | Ref. |
---|---|---|---|---|---|---|
1 | Co3(HITP)2 | 254 | 86.5 | 1.0 mol L-1 KOH | 12 h@16 mA cm-2 | [162] |
2 | NiCo-UMOFNs | 250 | 42 | 1.0 mol L-1 KOH | 200 h@10 mA cm-2 | [26] |
3 | FeCo-MNS-1.0 | 298 | 21.6 | 0.1 mol L-1 KOH | 10000 s@~22 mA cm-2 | [90] |
4 | NiFe-MOF | 215 | 49.1 | 1.0 mol L-1 KOH | 40 h@10 mA cm-2 | [98] |
5 | FeCo2Ni-MOF-74 | 254 | 21.4 | 0.1 mol L-1KOH | 100 h@10 mA cm-2 | [99] |
6 | MW-Ni4Co4Fe2-UMOFNs | 243 | 48.1 | 1.0 mol L-1 KOH | 10 h@12 mA cm-2 | [100] |
7 | UNi-MOFNs-2 | 170 | 41 | 1.0 mol L-1 KOH | 3,000 cycles | [110] |
8 | NiFe-MOF NSs | 240 | 73.44 | 1.0 mol L-1 KOH | 16 h@10 mA cm-2 | [111] |
9 | Fe:2D-Co-NS@Ni | 211 | 46 | 0.1 mol L-1 KOH | 95 h@10 mA cm-2 | [86] |
10 | Ni-BPDC | 415 | 83 | 1.0 mol L-1 KOH | 20000 s@5 mA cm-2 | [114] |
11 | Ni-MOF | 370 | 101.9 | 0.1 mol L-1 KOH | 1000 cycles | [153] |
12 | Co-ZIF-9(III) | 380 | 55 | 1.0 mol L-1 KOH | 10 h@15 mA cm-2 | [85] |
13 | Ni-Fe-MOF | 221 | 56 | 1.0 mol L-1 KOH | 20 h@10 mA cm-2 | [154] |
14 | NiFe-UMNs | 260 | 30 | 1.0 mol L-1 KOH | 10000 s@60 mA cm-2 | [155] |
15 | Ni-MOF@Fe-MOF | 265 | 82 | 1.0 mol L-1 KOH | — | [151] |
16 | 2D CoFe-MOF | 355 | 49.05 | 0.1 mol L-1 KOH | 15 h@20 mA cm-2 | [156] |
17 | CoFe MOFNSs | 276 | 46.7 | 1.0 mol L-1 KOH | — | [157] |
18 | CoFe-MOF-OH | 265 | 44 | 1.0 mol L-1 KOH | 40 h@10 mA cm-2 | [158] |
19 | TMOF-4 | 318 | 54 | 1.0 mol L-1 KOH | 15 h@20 mA cm-2 | [159] |
20 | CoNi-MOF/rGO | 318 | 48 | 1.0 mol L-1 KOH | 50 h@10 mA cm-2 | [160] |
21 | CoBDC-Fc0.17 | 178 | 61 | 1.0 mol L-1 KOH | 80 h@100 mA cm-2 | [119] |
22 | CoNi(1:1)-MOF | 265 | 56 | 1.0 mol L-1 KOH | 20 h@25 mA cm-2 | [161] |
23 | IF@CoFe-TDPAT NSA | 226.4 | 30.8 | 1.0 mol L-1 KOH | 24 h@300 mA cm-2 | [147] |
Fig. 15. (A) Schematic preparation of Ru@Cr-FeMOF. (B) Schematic diagram of the mechanism of the Cr-O-Ru interface regulating the orbitals of ruthenium nanoclusters. (C) LSV polarization curves with Ru@Cr-FeMOF||Ru@Cr-FeMOF electrodes and Pt/C||RuO2 electrodes. (D) Comparison of total water splitting performance between Ru@Cr-FeMOF and reported catalysts. Reproduced with permission from Ref. [152]. Copyright 2024, Wiley-VCH. (E) Schematic representation of synthesis procedure. (F) Voltages of water splitting electrolyzer at different current densities (10-500 mA cm−2). (G) J-V curves of silicon solar cell under simulated AM 1.5G 100 mW cm−2 illumination with water photolysis. Reproduced with permission from Ref. [103]. Copyright 2021, Elsevier.
Number | Catalyst | ηOER@10 mA cm-2/mV | ηHER@10 mA cm-2/mV | Condition | Cell Voltage | Stability | Ref. |
---|---|---|---|---|---|---|---|
1 | NiFe-MOF-74 | 208 | 195 | 1.0 mol L-1 KOH | 1.65 V@20 mA cm-2 | 3000 cycles | [141] |
2 | D-Ni-MOF | 219 | 101 | 1.0 mol L-1 KOH | 1.63 V@100 mA cm-2 | 48 h@100 mA cm-2 | [120] |
3 | NiFe-MOF array | 215 | 68 | 1.0 mol L-1 KOH | 1.87 V@500 mA cm-2 | 30 h@~17 mA cm-2 | [103] |
4 | NiFe-MOF | 240 | 134 | 0.1 mol L-1 KOH | 1.55 V@10 mA cm-2 | 20 h@~12 mA cm-2 | [16] |
5 | CoNi(1:1)-MOF | 265 | 120 | 1.0 mol L-1 KOH | 1.48 V@10 mA cm-2 | 80000 s@20 mA cm-2 | [161] |
6 | BP@MOF | 266 | 88 | 1.0 mol L-1 KOH | 1.63 V@10 mA cm-2 | 10 h@12 mA cm-2 | [163] |
7 | Ni0.3Co0.7-9AC-AD | 350 | 143 | 1.0 mol L-1 KOH | 1.56 V@10 mA cm-2 | 30 h@~12 mA cm-2 | [164] |
8 | Ni2V-MOFs@NF | 244 | 89 | 1.0 mol L-1 KOH | 1.55 V@10 mA cm-2 | 80 h@10 mA cm-2 | [165] |
9 | Ni@CoO@CoMOFC | 247 | 138 | 1.0 mol L-1 KOH | 1.61 V@10 mA cm-2 | 24 h@50 mA cm-2 | [166] |
10 | CoFe-PBA NS@NF-24 | 256 | 48 | 1.0 mol L-1 KOH | 1.545 V@10 mA cm-2 | 36 h@100 mA cm-2 | [167] |
11 | NiFe-MS/MOF@NF | 290 | 90 | 1.0 mol L-1 KOH | 1.61 V@10 mA cm-2 | 27 h@50 mA cm-2 | [168] |
12 | NH2-MIL-88B(Fe2Ni)/NF | 240 | 87 | 1.0 mol L-1 KOH | 1.56 V@10 mA cm-2 | 30 h@500 mA cm-2 | [169] |
13 | Ru@Cr-FeMOF | 190 | 21 | 1.0 mol L-1 KOH | 1.48 V@10 mA cm-2 | 80000 s@20 mA cm-2 | [152] |
14 | IF@CoFe-TDPAT NSA | 226.4 | 212.2 | 1.0 mol L-1 KOH | 1.43 V@10 mA cm-2 | 100 h@300 mA cm-2 | [147] |
Table 3 MOFNSs for electrocatalytic water splitting in recent years.
Number | Catalyst | ηOER@10 mA cm-2/mV | ηHER@10 mA cm-2/mV | Condition | Cell Voltage | Stability | Ref. |
---|---|---|---|---|---|---|---|
1 | NiFe-MOF-74 | 208 | 195 | 1.0 mol L-1 KOH | 1.65 V@20 mA cm-2 | 3000 cycles | [141] |
2 | D-Ni-MOF | 219 | 101 | 1.0 mol L-1 KOH | 1.63 V@100 mA cm-2 | 48 h@100 mA cm-2 | [120] |
3 | NiFe-MOF array | 215 | 68 | 1.0 mol L-1 KOH | 1.87 V@500 mA cm-2 | 30 h@~17 mA cm-2 | [103] |
4 | NiFe-MOF | 240 | 134 | 0.1 mol L-1 KOH | 1.55 V@10 mA cm-2 | 20 h@~12 mA cm-2 | [16] |
5 | CoNi(1:1)-MOF | 265 | 120 | 1.0 mol L-1 KOH | 1.48 V@10 mA cm-2 | 80000 s@20 mA cm-2 | [161] |
6 | BP@MOF | 266 | 88 | 1.0 mol L-1 KOH | 1.63 V@10 mA cm-2 | 10 h@12 mA cm-2 | [163] |
7 | Ni0.3Co0.7-9AC-AD | 350 | 143 | 1.0 mol L-1 KOH | 1.56 V@10 mA cm-2 | 30 h@~12 mA cm-2 | [164] |
8 | Ni2V-MOFs@NF | 244 | 89 | 1.0 mol L-1 KOH | 1.55 V@10 mA cm-2 | 80 h@10 mA cm-2 | [165] |
9 | Ni@CoO@CoMOFC | 247 | 138 | 1.0 mol L-1 KOH | 1.61 V@10 mA cm-2 | 24 h@50 mA cm-2 | [166] |
10 | CoFe-PBA NS@NF-24 | 256 | 48 | 1.0 mol L-1 KOH | 1.545 V@10 mA cm-2 | 36 h@100 mA cm-2 | [167] |
11 | NiFe-MS/MOF@NF | 290 | 90 | 1.0 mol L-1 KOH | 1.61 V@10 mA cm-2 | 27 h@50 mA cm-2 | [168] |
12 | NH2-MIL-88B(Fe2Ni)/NF | 240 | 87 | 1.0 mol L-1 KOH | 1.56 V@10 mA cm-2 | 30 h@500 mA cm-2 | [169] |
13 | Ru@Cr-FeMOF | 190 | 21 | 1.0 mol L-1 KOH | 1.48 V@10 mA cm-2 | 80000 s@20 mA cm-2 | [152] |
14 | IF@CoFe-TDPAT NSA | 226.4 | 212.2 | 1.0 mol L-1 KOH | 1.43 V@10 mA cm-2 | 100 h@300 mA cm-2 | [147] |
|
[1] | Kaining Li, Yasutaka Kuwahara, Hiromi Yamashita. 聚乙烯亚胺辅助合成包含多尺寸Ni物种的中空碳球用于CO2电还原[J]. 催化学报, 2024, 64(9): 66-76. |
[2] | 田文柔, 韩俊, 李娜君, 陈冬赟, 徐庆锋, 李华, 路建美. 通过温度依赖性自转化在SnS2/SnS上进行界面工程以增强压电催化[J]. 催化学报, 2024, 64(9): 166-179. |
[3] | 戴昊, 宋涛, 乐弦, 李福智, 魏淑婷, 徐延超, 舒偲妍, 崔子昂, 王成, 顾均, 段乐乐. 含氮石墨炔上构建Cu-N2单原子电催化剂用于CO2还原制CH4[J]. 催化学报, 2024, 64(9): 123-132. |
[4] | 谢旻斐, 姬星, 孟华颖, 姜南冰, 罗贞玉, 黄千千, 孙耿, 张云怀, 肖鹏. 赤铁矿光阳极界面钛原子在析氧反应多位点机制中的作用: 反应活性位点还是助催化位点?[J]. 催化学报, 2024, 64(9): 77-86. |
[5] | 郎程广, 许彦桐, 姚向东. 通过缺陷优化析氢反应电催化剂: 最新研究进展与展望[J]. 催化学报, 2024, 64(9): 4-31. |
[6] | 霍韵滢, 郭聪, 张永乐, 刘婧怡, 张巧, 刘芝婷, 杨光星, 李仁贵, 彭峰. 自支撑Ni(OH)2/NF催化剂高效电催化氧化5-羟甲基糠醛反应研究[J]. 催化学报, 2024, 63(8): 282-291. |
[7] | 肖佳勇, 蒋超, 张辉, 邢卓, 邱明, 余颖. 具有亲水性的无定形棒状核壳结构NiMoP@CuNWs用于中性介质中高效析氢[J]. 催化学报, 2024, 63(8): 154-163. |
[8] | 黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏, 杨建平. 提高酸性CO2电解的选择性:阳离子效应和催化剂创新[J]. 催化学报, 2024, 63(8): 61-80. |
[9] | 任清汇, 徐亮, 吕梦雨, 张秩远, 栗振华, 邵明飞, 段雪. 电催化还原反应中的阳离子效应:最新进展[J]. 催化学报, 2024, 63(8): 16-32. |
[10] | 李志鹏, 刘晓斌, 于青平, 屈欣悦, 万均, 肖振宇, 迟京起, 王磊. 用于高电流密度析氢反应电催化剂的研究进展[J]. 催化学报, 2024, 63(8): 33-60. |
[11] | Haruka Yamamoto, Langqiu Xiao, Yugo Miseki, Hiroto Ueki, Megumi Okazaki, Kazuhiro Sayama, Thomas E. Mallouk, Kazuhiko Maeda. 负载铂的二氧化钛是否是可见光下染料敏化制氢的最佳材料?[J]. 催化学报, 2024, 63(8): 124-132. |
[12] | 梅子雯, 陈克军, 谭耀, 刘秋文, 陈琴, 王其忧, 汪喜庆, 蔡超, 刘康, 傅俊伟, 刘敏. 从富含缺陷的碳载体到酞菁钴的质子供给用于增强CO2电还原[J]. 催化学报, 2024, 62(7): 190-197. |
[13] | 杨树姣, 江鹏飞, 岳楷航, 郭凯, 杨璐娜, 韩金秀, 彭欣阳, 张学鹏, 郑浩铨, 杨韬, 曹睿, 严雅, 张伟. 多配位水分子的焦磷酸锰用于电催化水氧化研究[J]. 催化学报, 2024, 62(7): 166-177. |
[14] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[15] | 陈振霖, 薛静, 武磊, 党昆, 籍宏伟, 陈春城, 章宇超, 赵进才. 协同光电及热效应实现铜光阴极上等离激元催化高效硝酸根还原反应[J]. 催化学报, 2024, 62(7): 219-230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||