催化学报 ›› 2025, Vol. 68: 282-299.DOI: 10.1016/S1872-2067(24)60170-1

• 论文 • 上一篇    下一篇

用于光降解气态硫化氢的TiO2/Bi4O5Br2阶梯型异质结的设计和制备: DFT计算、动力学、路径和机制

郝宝飞a, Younes Ahmadia, Jan Szulejkoa, 张天豪b,c, 路战胜b,c, Ki-Hyun Kima,*()   

  1. a汉阳大学土木与环境工程系, 首尔, 韩国
    b北京化工大学数理学院, 北京 100029, 中国
    c河南师范大学物理学院, 先进半导体与功能器件集成河南省重点实验室, 河南新乡 453007, 中国
  • 收稿日期:2024-08-10 接受日期:2024-10-08 出版日期:2025-01-18 发布日期:2025-01-02
  • 通讯作者: * 电子信箱: kkim61@hanyang.ac.kr (K.-H. Kim).
  • 基金资助:
    国家自然科学基金(12274118);河南省杰出外籍专家工作室(GZS2023007);河南省高等学校重点科研项目计划基础研究专项(22ZX013)

The design and fabrication of TiO2/Bi4O5Br2 step-scheme heterojunctions for the photodegradation of gaseous hydrogen sulfide: DFT calculation, kinetics, pathways, and mechanisms

Baofei Haoa, Younes Ahmadia, Jan Szulejkoa, Tianhao Zhangb,c, Zhansheng Lub,c, Ki-Hyun Kima,*()   

  1. aDepartment of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
    bSchool of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
    cHenan Key Laboratory of Advanced Semiconductor & Functional Device Integration, School of Physics, Henan Normal University, Xinxiang 453007, Henan, China
  • Received:2024-08-10 Accepted:2024-10-08 Online:2025-01-18 Published:2025-01-02
  • Contact: * E-mail: kkim61@hanyang.ac.kr (K.-H. Kim).
  • Supported by:
    National Natural Science Foundation of China(12274118);Henan Center for Outstanding Overseas Scientists(GZS2023007);Special Project for Fundamental Research in University of Henan Province(22ZX013)

摘要:

大气污染已成为威胁人类健康和破坏生态系统的重大问题. 其中, 硫化氢(H2S)因其强烈的毒性、腐蚀性和刺鼻的气味而亟需得到有效解决. 尽管生物降解、化学吸附和物理吸附等传统方法已被用于去除H2S, 但其降解效果仍不理想. 光催化降解H2S因其环境友好和可持续发展的优点而受到越来越多的关注. 然而, 电子-空穴对(e-h+)的重组现象严重抑制了光催化降解H2S的效率.
为了解决上述问题, 本文通过原位水热法将TiO2(P25)和Bi4O5Br2薄片组合成TiO2/Bi4O5Br2 异质结光催化剂(命名为x-TB-y: 其中xy分别表示TiO2:Bi4O5Br2摩尔比和合成溶液的pH值), 并构建了阶梯结构(S-scheme). 通过X射线粉末衍射和傅里叶变换红外光谱(FT-IR)证明了TiO2/Bi4O5Br2复合材料的成功制备. 扫描电镜和透射电镜结果表明, 在TiO2/Bi4O5Br2复合材料中, TiO2和Bi4O5Br2分别呈现为球状和片装形貌. 利用X射线电子能谱(XPS)技术, 并结合密度泛函理论计算揭示了该材料的内部电场结构. 光电流强度曲线和电化学阻抗曲线表明, 相较于TiO2和Bi4O5Br2, 5-TB-9具有更强的载流子分离和传输能力. 通过紫外-可见漫反射光谱和莫特肖特基曲线表征了材料的导带和价带位置, 并结合电子自旋共振和原位XPS, 证实了TiO2/Bi4O5Br2中S-scheme的电荷转移途径. 优化后的异质结光催化剂5-TB-9, 在12 min内对在17 L密闭空间内10 ppm H2S表出较高的去除效率(> 99%). 同时, 5-TB-9异质结催化剂具有较高的去除动力学速率(r: 0.7 mmol·h‒1·g‒1)、特定清洁空气输送率(SCADR: 5554 L·h‒1·g‒1)和量子产率(QY: 3.24 E-3 分子/光子). 此外, 研究了5-TB-9在不同催化剂用量(25‒150 mg)、H2S浓度(5-20 ppm)、流速(100-160 L min‒1)和相对湿度(20%-80%)下对H2S的降解效果. 循环降解实验表明, 所制备的5-TB-9光催化剂在6次循环实验后仍保持较高的光催化降解活性, 在12 min内降解了92.0%的H2S. 结合原位FT-IR和气相色谱-质谱结果, 研究了H2S的降解机制, 结果表明H2S直接转化生成了SO42‒, 没有观察到中间产物.

综上, 本文证明了S-scheme TiO2/Bi4O5Br2光催化剂对有害H2S气体的修复潜力, 为设计可持续的环境修复方案提供了参考.

关键词: 硫化氢去除, 光催化, S-scheme异质结, 可循环

Abstract:

It is a challenging task to efficiently convert deleterious hydrogen sulfide (H2S) into less harmful products such as SO42- species. In an effort to address such issue, a step-scheme (S-scheme) heterojunction photocatalyst has been built by concatenating TiO2 (P25) and ultrathin Bi4O5Br2 into TiO2/Bi4O5Br2 (namely, x-TB-y: x and y denote the molar ratio of TiO2:Bi4O5Br2 and pH value for solution-based synthesis, respectively) via in-situ hydrothermal method. The S-scheme charge transfer pathway in TB is confirmed by electron spin resonance and band structure analysis while experimental data and density functional theory calculations suggest the formation of an internal electric field to facilitate the separation and transfer of photoinduced charge carriers. Accordingly, the optimized heterojunction photocatalyst, i.e., 5-TB-9, showcases significantly high (> 99%) removal efficiency against 10 ppm H2S in a 17 L chamber within 12 minutes (removal kinetic rate r: 0.7 mmol·h-1·g-1, specific clean air delivery rate SCADR: 5554 L·h-1·g-1, quantum yield QY: 3.24 E-3 molecules·photon-1, and space-time yield STY: 3.24 E-3 molecules·photon-1·mg-1). Combined analysis of in-situ diffuse reflectance infrared Fourier transform adsorption spectra and gas chromatography-mass spectrometry allows to evaluate the mechanisms leading to the complete degradation of H2S (i.e., into SO42- without forming any intermediate species). This work demonstrates the promising remediation potential of an S-scheme TiO2/Bi4O5Br2 photocatalyst against hazardous H2S gas for sustainable environmental remediation.

Key words: H2S removal, Photocatalysis, S-scheme heterojunction, Recyclability