催化学报 ›› 2025, Vol. 68: 282-299.DOI: 10.1016/S1872-2067(24)60170-1
郝宝飞a, Younes Ahmadia, Jan Szulejkoa, 张天豪b,c, 路战胜b,c, Ki-Hyun Kima,*()
收稿日期:
2024-08-10
接受日期:
2024-10-08
出版日期:
2025-01-18
发布日期:
2025-01-02
通讯作者:
* 电子信箱: kkim61@hanyang.ac.kr (K.-H. Kim).基金资助:
Baofei Haoa, Younes Ahmadia, Jan Szulejkoa, Tianhao Zhangb,c, Zhansheng Lub,c, Ki-Hyun Kima,*()
Received:
2024-08-10
Accepted:
2024-10-08
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: Supported by:
摘要:
大气污染已成为威胁人类健康和破坏生态系统的重大问题. 其中, 硫化氢(H2S)因其强烈的毒性、腐蚀性和刺鼻的气味而亟需得到有效解决. 尽管生物降解、化学吸附和物理吸附等传统方法已被用于去除H2S, 但其降解效果仍不理想. 光催化降解H2S因其环境友好和可持续发展的优点而受到越来越多的关注. 然而, 电子-空穴对(e‒-h+)的重组现象严重抑制了光催化降解H2S的效率.
为了解决上述问题, 本文通过原位水热法将TiO2(P25)和Bi4O5Br2薄片组合成TiO2/Bi4O5Br2 异质结光催化剂(命名为x-TB-y: 其中x和y分别表示TiO2:Bi4O5Br2摩尔比和合成溶液的pH值), 并构建了阶梯结构(S-scheme). 通过X射线粉末衍射和傅里叶变换红外光谱(FT-IR)证明了TiO2/Bi4O5Br2复合材料的成功制备. 扫描电镜和透射电镜结果表明, 在TiO2/Bi4O5Br2复合材料中, TiO2和Bi4O5Br2分别呈现为球状和片装形貌. 利用X射线电子能谱(XPS)技术, 并结合密度泛函理论计算揭示了该材料的内部电场结构. 光电流强度曲线和电化学阻抗曲线表明, 相较于TiO2和Bi4O5Br2, 5-TB-9具有更强的载流子分离和传输能力. 通过紫外-可见漫反射光谱和莫特肖特基曲线表征了材料的导带和价带位置, 并结合电子自旋共振和原位XPS, 证实了TiO2/Bi4O5Br2中S-scheme的电荷转移途径. 优化后的异质结光催化剂5-TB-9, 在12 min内对在17 L密闭空间内10 ppm H2S表出较高的去除效率(> 99%). 同时, 5-TB-9异质结催化剂具有较高的去除动力学速率(r: 0.7 mmol·h‒1·g‒1)、特定清洁空气输送率(SCADR: 5554 L·h‒1·g‒1)和量子产率(QY: 3.24 E-3 分子/光子). 此外, 研究了5-TB-9在不同催化剂用量(25‒150 mg)、H2S浓度(5-20 ppm)、流速(100-160 L min‒1)和相对湿度(20%-80%)下对H2S的降解效果. 循环降解实验表明, 所制备的5-TB-9光催化剂在6次循环实验后仍保持较高的光催化降解活性, 在12 min内降解了92.0%的H2S. 结合原位FT-IR和气相色谱-质谱结果, 研究了H2S的降解机制, 结果表明H2S直接转化生成了SO42‒, 没有观察到中间产物.
综上, 本文证明了S-scheme TiO2/Bi4O5Br2光催化剂对有害H2S气体的修复潜力, 为设计可持续的环境修复方案提供了参考.
郝宝飞, Younes Ahmadi, Jan Szulejko, 张天豪, 路战胜, Ki-Hyun Kim. 用于光降解气态硫化氢的TiO2/Bi4O5Br2阶梯型异质结的设计和制备: DFT计算、动力学、路径和机制[J]. 催化学报, 2025, 68: 282-299.
Baofei Hao, Younes Ahmadi, Jan Szulejko, Tianhao Zhang, Zhansheng Lu, Ki-Hyun Kim. The design and fabrication of TiO2/Bi4O5Br2 step-scheme heterojunctions for the photodegradation of gaseous hydrogen sulfide: DFT calculation, kinetics, pathways, and mechanisms[J]. Chinese Journal of Catalysis, 2025, 68: 282-299.
Fig. 1. The electron transfer pathway for different heterojunction systems: type-II heterojunction (a) and S-scheme heterojunction (b). RP and OP denote reducing photocatalyst and oxidizing photocatalyst, respectively. In (b), the red dotted loop in the center is used to denote the recombination of electron-hole pairs, while the two blue dotted loops signify the preservation of electrons (in CB of RP) and holes (in VB of OP) for reduction and oxidation, respectively.
Order | AP code | HC code | Code of sample catalyst* | Composition | pH of synthesis solution | TiO2 mass in TiO2/Bi4O5Br2 composites (mg) | Bi4O5Br2 mass in TiO2/Bi4O5Br2 composites (mg) | Molar ratio of TiO2:Bi4O5Br2 | Amount of sample loaded on HC (mg) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | AP-T | HC-T | TiO2 | TiO2 | 7 | — | — | — | 50 | |
2 | AP-B1 | HC-B1 | BOB-1 | BiOBr | 1 | — | — | — | 50 | |
3 | AP-B3 | HC-B3 | BOB-3 | BiOBr | 3 | — | — | — | 50 | |
4 | AP-B5 | HC-B5 | BOB-5 | BiOBr | 5 | — | — | — | 50 | |
5 | AP-B7 | HC-B7 | BOB-7 | BiOBr | 7 | — | — | — | 50 | |
6 | AP-B9 | HC-B9 | BOB-9 | Bi4O5Br2 | 9 | — | — | — | 50 | |
7 | AP-B11 | HC-B11 | BOB-11 | Bi4O5Br2 | 11 | — | — | — | 50 | |
8 | AP-1TB | HC-1TB | 1-TB-9 | Bi4O5Br2, TiO2 | 9 | 100 | 573 | 1.75 | 50 | |
9 | AP-3TB | HC-3TB | 3-TB-9 | Bi4O5Br2, TiO2 | 9 | 200 | 573 | 3.61 | 50 | |
10 | AP-5TB | HC-5TB | 5-TB-9 | Bi4O5Br2, TiO2 | 9 | 300 | 573 | 5.36 | 25−100 | |
11 | AP-7TB | HC-7TB | 7-TB-9 | Bi4O5Br2, TiO2 | 9 | 400 | 573 | 7.22 | 50 | |
12 | AP-9TB | HC-9TB | 9-TB-9 | Bi4O5Br2, TiO2 | 9 | 500 | 573 | 8.99 | 50 |
Table 1 Detailed information on the coding and preparation conditions of BOB- and TB-type photocatalysts used for the destruction of gaseous hydrogen sulfide in this work.
Order | AP code | HC code | Code of sample catalyst* | Composition | pH of synthesis solution | TiO2 mass in TiO2/Bi4O5Br2 composites (mg) | Bi4O5Br2 mass in TiO2/Bi4O5Br2 composites (mg) | Molar ratio of TiO2:Bi4O5Br2 | Amount of sample loaded on HC (mg) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | AP-T | HC-T | TiO2 | TiO2 | 7 | — | — | — | 50 | |
2 | AP-B1 | HC-B1 | BOB-1 | BiOBr | 1 | — | — | — | 50 | |
3 | AP-B3 | HC-B3 | BOB-3 | BiOBr | 3 | — | — | — | 50 | |
4 | AP-B5 | HC-B5 | BOB-5 | BiOBr | 5 | — | — | — | 50 | |
5 | AP-B7 | HC-B7 | BOB-7 | BiOBr | 7 | — | — | — | 50 | |
6 | AP-B9 | HC-B9 | BOB-9 | Bi4O5Br2 | 9 | — | — | — | 50 | |
7 | AP-B11 | HC-B11 | BOB-11 | Bi4O5Br2 | 11 | — | — | — | 50 | |
8 | AP-1TB | HC-1TB | 1-TB-9 | Bi4O5Br2, TiO2 | 9 | 100 | 573 | 1.75 | 50 | |
9 | AP-3TB | HC-3TB | 3-TB-9 | Bi4O5Br2, TiO2 | 9 | 200 | 573 | 3.61 | 50 | |
10 | AP-5TB | HC-5TB | 5-TB-9 | Bi4O5Br2, TiO2 | 9 | 300 | 573 | 5.36 | 25−100 | |
11 | AP-7TB | HC-7TB | 7-TB-9 | Bi4O5Br2, TiO2 | 9 | 400 | 573 | 7.22 | 50 | |
12 | AP-9TB | HC-9TB | 9-TB-9 | Bi4O5Br2, TiO2 | 9 | 500 | 573 | 8.99 | 50 |
Fig. 2. Photocatalytic removal efficiency of H2S over the as-prepared photocatalysts under UV light irradiation (0.98 W power). (a) pH effect: BOB-1, BOB-3, BOB-5, BOB-7, BOB-9, and BOB-11; (b) catalyst mass effect: 1-TB-9, 3-TB-9, 5-TB-9, 7-TB-9, and 9-TB-9 and reference (TiO2).
Order | AP code | Sample | XH2S (%) | Quantum yield (molecules· photon-1) | Quantum yield (t=0) (molecules·photon-1) | Space time yield (molecules·phot on-1·mg-1) | Kinetic rate constant (second-1) | Stream removal efficiency (%) | CADR (L·h-1) | SCADR (L·h-1·g-1) | r10% (at X = 10%) (mmol g-1·h-1) | rmax (mmol·g-1· h-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | AP-T | TiO2 | 31.3 | 1.01 E-3 | 8.58 E-3 | 2.02 E-5 | 4.78 E-4 | 0.37 | 27.6 | 552 | 1.22 | 0.22 |
2 | AP-B1 | BOB-1 | 34.3 | 1.11 E-3 | 5.92 E-3 | 2.22 E-5 | 5.76 E-4 | 0.44 | 34.2 | 682 | 0.65 | 0.24 |
3 | AP-B3 | BOB-3 | 41.0 | 1.33 E-3 | 5.92 E-3 | 2.66 E-5 | 8.15 E-4 | 0.62 | 48.6 | 972 | 0.7 | 0.29 |
4 | AP-B5 | BOB-5 | 54.7 | 1.77 E-3 | 5.51 E-3 | 3.54 E-5 | 1.14 E-3 | 0.87 | 68.4 | 1368 | 0.74 | 0.38 |
5 | AP-B7 | BOB-7 | 59.7 | 1.94 E-3 | 9.16 E-3 | 3.88 E-5 | 1.27 E-3 | 0.97 | 76.2 | 1524 | 1.47 | 0.42 |
6 | AP-B9 | BOB-9 | 81.0 | 2.62 E-3 | 1.25 E-2 | 5.24 E-5 | 2.37 E-3 | 1.81 | 143.4 | 2868 | 1.84 | 0.57 |
7 | AP-B11 | BOB-11 | 73.7 | 2.37 E-3 | 1.40 E-2 | 4.74 E-5 | 1.84 E-3 | 1.40 | 111 | 2220 | 2.3 | 0.52 |
8 | AP-1TB | 1-TB-9 | 94.7 | 3.06 E-3 | 1.88 E-2 | 6.12 E-5 | 3.67 E-3 | 2.87 | 224.4 | 4488 | 2.91 | 0.66 |
9 | AP-3TB | 3-TB-9 | 96.3 | 3.11 E-3 | 1.95 E-2 | 6.22 E-5 | 3.70 E-3 | 2.90 | 226.2 | 4524 | 1.97 | 0.67 |
10 | AP-5TB | 5-TB-9 | 100 | 3.24 E-3 | 1.51 E-2 | 6.48 E-5 | 4.53 E-3 | 3.55 | 277.2 | 5544 | 1.85 | 0.70 |
11 | AP-7TB | 7-TB-9 | 95.7 | 3.10 E-3 | 2.36 E-2 | 6.20 E-5 | 3.36 E-3 | 2.63 | 205.8 | 4116 | 3.02 | 0.67 |
12 | AP-9TB | 9-TB-9 | 92.7 | 3.00 E-3 | 1.79 E-2 | 6.00 E-5 | 3.32 E-3 | 2.60 | 202.8 | 4056 | 2.64 | 0.65 |
Table 2 The calculated degradation efficiency, quantum yield, space time yield, kinetic rate constant, stream removal efficiency, CADR, r 10% (at X = 10%), and rmax (at the max X) of various photocatalysts.
Order | AP code | Sample | XH2S (%) | Quantum yield (molecules· photon-1) | Quantum yield (t=0) (molecules·photon-1) | Space time yield (molecules·phot on-1·mg-1) | Kinetic rate constant (second-1) | Stream removal efficiency (%) | CADR (L·h-1) | SCADR (L·h-1·g-1) | r10% (at X = 10%) (mmol g-1·h-1) | rmax (mmol·g-1· h-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | AP-T | TiO2 | 31.3 | 1.01 E-3 | 8.58 E-3 | 2.02 E-5 | 4.78 E-4 | 0.37 | 27.6 | 552 | 1.22 | 0.22 |
2 | AP-B1 | BOB-1 | 34.3 | 1.11 E-3 | 5.92 E-3 | 2.22 E-5 | 5.76 E-4 | 0.44 | 34.2 | 682 | 0.65 | 0.24 |
3 | AP-B3 | BOB-3 | 41.0 | 1.33 E-3 | 5.92 E-3 | 2.66 E-5 | 8.15 E-4 | 0.62 | 48.6 | 972 | 0.7 | 0.29 |
4 | AP-B5 | BOB-5 | 54.7 | 1.77 E-3 | 5.51 E-3 | 3.54 E-5 | 1.14 E-3 | 0.87 | 68.4 | 1368 | 0.74 | 0.38 |
5 | AP-B7 | BOB-7 | 59.7 | 1.94 E-3 | 9.16 E-3 | 3.88 E-5 | 1.27 E-3 | 0.97 | 76.2 | 1524 | 1.47 | 0.42 |
6 | AP-B9 | BOB-9 | 81.0 | 2.62 E-3 | 1.25 E-2 | 5.24 E-5 | 2.37 E-3 | 1.81 | 143.4 | 2868 | 1.84 | 0.57 |
7 | AP-B11 | BOB-11 | 73.7 | 2.37 E-3 | 1.40 E-2 | 4.74 E-5 | 1.84 E-3 | 1.40 | 111 | 2220 | 2.3 | 0.52 |
8 | AP-1TB | 1-TB-9 | 94.7 | 3.06 E-3 | 1.88 E-2 | 6.12 E-5 | 3.67 E-3 | 2.87 | 224.4 | 4488 | 2.91 | 0.66 |
9 | AP-3TB | 3-TB-9 | 96.3 | 3.11 E-3 | 1.95 E-2 | 6.22 E-5 | 3.70 E-3 | 2.90 | 226.2 | 4524 | 1.97 | 0.67 |
10 | AP-5TB | 5-TB-9 | 100 | 3.24 E-3 | 1.51 E-2 | 6.48 E-5 | 4.53 E-3 | 3.55 | 277.2 | 5544 | 1.85 | 0.70 |
11 | AP-7TB | 7-TB-9 | 95.7 | 3.10 E-3 | 2.36 E-2 | 6.20 E-5 | 3.36 E-3 | 2.63 | 205.8 | 4116 | 3.02 | 0.67 |
12 | AP-9TB | 9-TB-9 | 92.7 | 3.00 E-3 | 1.79 E-2 | 6.00 E-5 | 3.32 E-3 | 2.60 | 202.8 | 4056 | 2.64 | 0.65 |
Order | AP code | Sample | Parameters | 0 s | 60 s | 120 s | 240 s | 360 s | 480 s | 600 s |
---|---|---|---|---|---|---|---|---|---|---|
1 | AP-5TB | 5-TB-9 | QY(t) | 1.51 E-2 | 8.52 E-3 | 7.74 E-3 | 6.17 E-3 | 5.05 E-3 | 4.29 E-3 | 3.73 E-3 |
SQY(t) | 1.51 E-3 | 1.09 E-3 | 1.29 E-3 | 1.7 E-3 | 2.33 E-3 | 3.8 E-3 | 1.0 E-3 | |||
2 | AP-T | TiO2 | QY(t) | 8.58 E-3 | 5.16 E-3 | 3.16 E-3 | 2.03 E-3 | 1.53 E-3 | 1.27 E-3 | 1.1 E-3 |
SQY(t) | 8.58 E-4 | 5.96 E-4 | 3.78 E-4 | 2.57 E-4 | 2.00 E-4 | 1.73 E-4 | 1.53 E-4 |
Table 3 The calculated QY(t) and SQY(t) of the best photocatalyst (5-TB-9) and pristine TiO2.
Order | AP code | Sample | Parameters | 0 s | 60 s | 120 s | 240 s | 360 s | 480 s | 600 s |
---|---|---|---|---|---|---|---|---|---|---|
1 | AP-5TB | 5-TB-9 | QY(t) | 1.51 E-2 | 8.52 E-3 | 7.74 E-3 | 6.17 E-3 | 5.05 E-3 | 4.29 E-3 | 3.73 E-3 |
SQY(t) | 1.51 E-3 | 1.09 E-3 | 1.29 E-3 | 1.7 E-3 | 2.33 E-3 | 3.8 E-3 | 1.0 E-3 | |||
2 | AP-T | TiO2 | QY(t) | 8.58 E-3 | 5.16 E-3 | 3.16 E-3 | 2.03 E-3 | 1.53 E-3 | 1.27 E-3 | 1.1 E-3 |
SQY(t) | 8.58 E-4 | 5.96 E-4 | 3.78 E-4 | 2.57 E-4 | 2.00 E-4 | 1.73 E-4 | 1.53 E-4 |
Fig. 3. Photocatalytic removal efficiency of H2S by 5-TB-9 under various conditions. (a) Catalyst dosage; (b) H2S concentration; (c) gas flow velocity; (d) relative humidity.
Fig. 4. Microscopic characterization of the catalysts tested in this work. TEM images of BOB-1 (a), BOB-9 (c), TiO2 (e) and 5-TB-9 (g). HRTEM images of BOB-1 (b), BOB-9 (d), TiO2 (f), and 5-TB-9 (h). (i) HAADF-TEM and elemental maps of 5-TB-9.
Order | Photocatalyst mass (mg) | H2S concentration (ppm) | Flow rate (L·min-1) | Relative humidity (%) | XH2S (%) | Kinetic rate constant (s-1) |
---|---|---|---|---|---|---|
1 | 25 | 10 | 130 | 0 | 88.0 | 2.31 E-3 |
2 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
3 | 75 | 10 | 130 | 0 | 100 | 5.07 E-3 |
4 | 100 | 10 | 130 | 0 | 100 | 5.15 E-3 |
5 | 50 | 5 | 130 | 0 | 100 | 6.09 E-3 |
6 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
7 | 50 | 15 | 130 | 0 | 99.3 | 5.58 E-3 |
8 | 50 | 20 | 130 | 0 | 94.8 | 3.29 E-3 |
9 | 50 | 10 | 100 | 0 | 99.0 | 4.53 E-3 |
10 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
11 | 50 | 10 | 160 | 0 | 99.7 | 4.72 E-3 |
12 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
13 | 50 | 10 | 130 | 40 | 100 | 6.23 E-3 |
14 | 50 | 10 | 130 | 60 | 100 | 6.22 E-2 |
15 | 50 | 10 | 130 | 80 | 98.7 | 4.31 E-2 |
Table 4 Photocatalytic performance evaluation of 5-TB-9 under various conditions.
Order | Photocatalyst mass (mg) | H2S concentration (ppm) | Flow rate (L·min-1) | Relative humidity (%) | XH2S (%) | Kinetic rate constant (s-1) |
---|---|---|---|---|---|---|
1 | 25 | 10 | 130 | 0 | 88.0 | 2.31 E-3 |
2 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
3 | 75 | 10 | 130 | 0 | 100 | 5.07 E-3 |
4 | 100 | 10 | 130 | 0 | 100 | 5.15 E-3 |
5 | 50 | 5 | 130 | 0 | 100 | 6.09 E-3 |
6 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
7 | 50 | 15 | 130 | 0 | 99.3 | 5.58 E-3 |
8 | 50 | 20 | 130 | 0 | 94.8 | 3.29 E-3 |
9 | 50 | 10 | 100 | 0 | 99.0 | 4.53 E-3 |
10 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
11 | 50 | 10 | 160 | 0 | 99.7 | 4.72 E-3 |
12 | 50 | 10 | 130 | 0 | 100 | 4.67 E-3 |
13 | 50 | 10 | 130 | 40 | 100 | 6.23 E-3 |
14 | 50 | 10 | 130 | 60 | 100 | 6.22 E-2 |
15 | 50 | 10 | 130 | 80 | 98.7 | 4.31 E-2 |
Fig. 9. DFT simulations of the catalyst samples investigated in this research. Calculated band structures of 5-TB-9 (a), TiO2 (b), and Bi4O5Br2 (c). DOS results of 5-TB-9 (d), TiO2 (e), and Bi4O5Br2 (f). Calculated work functions of the as-prepared TiO2 (g) and Bi4O5Br2 (h) samples. (i) The charge distribution difference of 5-TB-9.
Fig. 11. In situ FTIR spectra for the degradation of H2S upon 5-TB-9 under different conditions. (a) Dark; (b) humid air; (c) dry air; (d) dry N2; (e) 10% O2; (f) humid N2.
Fig. 12. The possible transfer pathways of charge carriers in S-scheme heterojunction studied in this research (i.e., TiO2/Bi4O5Br2) in reference to other type of heterojunction. (a) Type-II heterojunction (as reference); (b) S-scheme heterojunction.
Order | Photocatalyst | Pollution | Light source | Reactor | Catalyst mass (mg) | Concentration (ppm) | Reaction duration (min) | Conversion (%) | rmax (mmol·g-1·h-1) | SCADR (L·h-1·g-1) | Quantum yield (molecules/ photon) | Space time yield (molecules/photon·mg) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | B-TiO2/LDH | H2S | Xenon lamp (300 w) | fixed-bed tube | 100 | 100 | 60 | 96.4 | — | — | 2.07 E-6 | 2.14 E-8 | [ |
2 | Carbon-doped boron nitride | H2S | LED lamp (40 W) | fixed-bed tube | 40 | 20 | 80 | 99 | — | — | 2.24 E-6 | 5.60 E-8 | [ |
3 | CdS/C3N4 | H2S | Xenon lamp (300 w) | fixed-bed tube | 50 | 10 | 30 | 99.9 | — | — | 2.58 E-6 | 5.16 E-8 | [ |
4 | SiO2@α-Fe2O3@COF | H2S | B-9 lamp (no mention of light intensity) | fixed-bed tube | 40 | 20 | 120 | 95.4 | — | — | — | — | [ |
5 | CNFs@TiO2 @MIL-100 | H2S | UV light (no mention of light intensity) | 1.6 L chamber | — | 200 | 140 | 93.5 | — | — | — | — | [ |
6 | Mn-TiO2 | H2S | Two VUV lamps (4 W) | fixed-bed tube | 1000 | 150 | 60 | 89.9 | — | — | 3.78 E-3 | 3.78 E-6 | [ |
7 | TiO2@MIL-101 | H2S | UV light (no mention of light intensity) | 1.6 L chamber | 500 | 200 | — | 90 | — | — | — | — | [ |
8 | Pt@Cu-TiO2 | FA | 0.98 W UV light | 17 L chamber | 50 | 0.5 | 10 | 100 | 0.042 | 1.94 E -4 | 3.88 E -6 | [ | |
9 | TiO2-diatomite | FA | 250 W UV lamp | batch reactor | 1000 | 0.79 | 180 | 90.9 | 3.5 E -3 | 160 | 8.91E-07 | 8.91E-10 | [ |
10 | rGO-TiO2 | FA | xenon lamp | stainless steel reactor | 500 | 0.5 | 240 | 88.3 | 5.80 E-7 | 2. 96E-2 | 3.21 E-10 | 6.43 E-13 | [ |
11 | Pt-TiO2 | FA | visible light source | batch reactor | 100 | 400 | 60 | 93.8 | — | — | — | — | [ |
12 | Pt@TiO2 | FA | 18 W daylight lamp | reaction chamber | 20 | 10 | 240 | 98.3 | — | 22.3 | 3.09 E-07 | 1.55 E-08 | [ |
13 | 5-TB-9 | H2S | 0.98 W UV light | 17 L chamber | 50 | 10 | 12 | 100 | 0.70 | 5544 | 3.24 E-3 | 6.48 E-5 | this work |
Table 5 Performance comparison of 5-TB-9 with photocatalysts reported recently.
Order | Photocatalyst | Pollution | Light source | Reactor | Catalyst mass (mg) | Concentration (ppm) | Reaction duration (min) | Conversion (%) | rmax (mmol·g-1·h-1) | SCADR (L·h-1·g-1) | Quantum yield (molecules/ photon) | Space time yield (molecules/photon·mg) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | B-TiO2/LDH | H2S | Xenon lamp (300 w) | fixed-bed tube | 100 | 100 | 60 | 96.4 | — | — | 2.07 E-6 | 2.14 E-8 | [ |
2 | Carbon-doped boron nitride | H2S | LED lamp (40 W) | fixed-bed tube | 40 | 20 | 80 | 99 | — | — | 2.24 E-6 | 5.60 E-8 | [ |
3 | CdS/C3N4 | H2S | Xenon lamp (300 w) | fixed-bed tube | 50 | 10 | 30 | 99.9 | — | — | 2.58 E-6 | 5.16 E-8 | [ |
4 | SiO2@α-Fe2O3@COF | H2S | B-9 lamp (no mention of light intensity) | fixed-bed tube | 40 | 20 | 120 | 95.4 | — | — | — | — | [ |
5 | CNFs@TiO2 @MIL-100 | H2S | UV light (no mention of light intensity) | 1.6 L chamber | — | 200 | 140 | 93.5 | — | — | — | — | [ |
6 | Mn-TiO2 | H2S | Two VUV lamps (4 W) | fixed-bed tube | 1000 | 150 | 60 | 89.9 | — | — | 3.78 E-3 | 3.78 E-6 | [ |
7 | TiO2@MIL-101 | H2S | UV light (no mention of light intensity) | 1.6 L chamber | 500 | 200 | — | 90 | — | — | — | — | [ |
8 | Pt@Cu-TiO2 | FA | 0.98 W UV light | 17 L chamber | 50 | 0.5 | 10 | 100 | 0.042 | 1.94 E -4 | 3.88 E -6 | [ | |
9 | TiO2-diatomite | FA | 250 W UV lamp | batch reactor | 1000 | 0.79 | 180 | 90.9 | 3.5 E -3 | 160 | 8.91E-07 | 8.91E-10 | [ |
10 | rGO-TiO2 | FA | xenon lamp | stainless steel reactor | 500 | 0.5 | 240 | 88.3 | 5.80 E-7 | 2. 96E-2 | 3.21 E-10 | 6.43 E-13 | [ |
11 | Pt-TiO2 | FA | visible light source | batch reactor | 100 | 400 | 60 | 93.8 | — | — | — | — | [ |
12 | Pt@TiO2 | FA | 18 W daylight lamp | reaction chamber | 20 | 10 | 240 | 98.3 | — | 22.3 | 3.09 E-07 | 1.55 E-08 | [ |
13 | 5-TB-9 | H2S | 0.98 W UV light | 17 L chamber | 50 | 10 | 12 | 100 | 0.70 | 5544 | 3.24 E-3 | 6.48 E-5 | this work |
|
[1] | Athira Krishnan, K. Archana, A. S. Arsha, Amritha Viswam, M. S. Meera. 宽带隙半导体在电催化和光催化水分解绿色制氢中的潜在作用[J]. 催化学报, 2025, 68(1): 103-145. |
[2] | 张杨, 徐能能, 巩兵兵, 叶笑笑, 阳宜, 王昭娣, 庄碧艳, 王敏, 刘桂成, 乔锦丽. 可见光驱动的CoS2/CuS@CNT-C3N4光催化剂用于500 mW cm-2 以上的高性能可充放电锌-空气电池[J]. 催化学报, 2025, 68(1): 300-310. |
[3] | 陈加藏. 实际光催化反应中的半导体-助催化剂界面电子转移[J]. 催化学报, 2025, 68(1): 213-222. |
[4] | 李世杰, 游常俊, 杨方, 梁桂杰, 庄春强, 李鑫. 界面Mo-S化学键调控Mn0.5Cd0.5S/Bi2MoO6 S型异质结增强光催化去除新兴有机污染物[J]. 催化学报, 2025, 68(1): 259-271. |
[5] | 吴亚强, 李佳诺, 钟伟健, 潘振华, 王谦. 堂免一成教授的光催化人生: 光催化分解水的新型材料和技术手段[J]. 催化学报, 2025, 68(1): 1-50. |
[6] | 项祥林, 程蓓, 朱必成, 姜传佳, 梁桂杰. 高熵合金纳米晶体促进光催化析氢耦合肉桂醇选择性氧化[J]. 催化学报, 2025, 68(1): 326-335. |
[7] | 付辉, 田金, 张倩倩, 郑昭科, 程合峰, 刘媛媛, 黄柏标, 王朋. 钴单原子修饰的石墨烯助催化剂用于提高卤化物钙钛矿光催化CO2还原活性[J]. 催化学报, 2024, 64(9): 143-151. |
[8] | 刘方璇, 孙彬, 刘子妍, 魏英勤, 高婷婷, 周国伟. 空位工程调控中空结构ZnO/ZnS S型异质结用于高效光催化产氢[J]. 催化学报, 2024, 64(9): 152-165. |
[9] | 林铮, 谢婉婷, 朱梦静, 汪长春, 郭佳. 二氧化硅支撑的平行堆叠排列手性共价有机框架促进光催化析氢[J]. 催化学报, 2024, 64(9): 87-97. |
[10] | 王金龙, 刘东妮, 李铭洋, 谷骁一, 吴仕群, 张金龙. 通过金属空位工程促进CO2光还原[J]. 催化学报, 2024, 63(8): 202-212. |
[11] | 张棋祺, 苗慧, 王俊, 孙涛, 刘恩周. In2.77S4/K+掺杂g-C3N4自组装S型异质结光催化H2O和O2合成H2O2[J]. 催化学报, 2024, 63(8): 176-189. |
[12] | 厉超, 王朔, 刘媛, 黄细河, 庄严, 吴舒鸿, 汪颖, 温娜, 吴凯丰, 丁正新, 龙金林. 共价有机框架双电场叠加实现高效光催化产氢[J]. 催化学报, 2024, 63(8): 164-175. |
[13] | 陈春光, 张金锋, 褚海亮, 孙立贤, Graham Dawson, 代凯. 硫族化物基S型异质结光催化剂[J]. 催化学报, 2024, 63(8): 81-108. |
[14] | 任卫杰, 李宁, 常青, 武杰, 杨金龙, 胡胜亮, 康振辉. 通过碳点从共价三嗪框架中提取光生空穴用于光合作用产过氧化氢[J]. 催化学报, 2024, 62(7): 178-189. |
[15] | 陈朝辉, 邓军, 郑燕梅, 张文君, 董琳, 陈祖鹏. 通过调节碳自由基的反应活性调控偶联反应产物和羰基化合物的选择性合成[J]. 催化学报, 2024, 61(6): 135-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||