催化学报 ›› 2025, Vol. 68: 259-271.DOI: 10.1016/S1872-2067(24)60181-6

• 论文 • 上一篇    下一篇

界面Mo-S化学键调控Mn0.5Cd0.5S/Bi2MoO6 S型异质结增强光催化去除新兴有机污染物

李世杰a,*(), 游常俊a, 杨方b, 梁桂杰c, 庄春强d,*(), 李鑫e,*()   

  1. a浙江海洋大学海洋科学与技术学院, 国家海洋设施养殖工程技术研究中心, 浙江省海产品健康危害因素关键技术研究重点实验室, 浙江舟山 316022
    b上海工程技术大学机械与汽车工程学院, 上海 201620
    c湖北文理学院低维光电材料与器件重点实验室, 湖北襄阳 441053
    d北京工业大学, 材料与制造学部, 固体微结构与性能北京市重点实验室, 北京 100124
    e华南农业大学农业农村部能源植物资源与利用重点实验室, 生物质工程研究所, 广东广州 510642
  • 收稿日期:2024-07-24 接受日期:2024-10-11 出版日期:2025-01-18 发布日期:2025-01-02
  • 通讯作者: * 电子信箱: lishijie@zjou.edu.cn (李世杰), chunqiang.zhuang@bjut.edu.cn (庄春强), xinli@scau.edu.cn (李鑫).
  • 基金资助:
    国家自然科学基金(U1809214);浙江省自然科学基金(LY20E080014);浙江省自然科学基金(LTGN23E080001);舟山市科技计划项目(2022C41011)

Interfacial Mo-S bond modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction for boosted photocatalytic removal of emerging organic contaminants

Shijie Lia,*(), Changjun Youa, Fang Yangb, Guijie Liangc, Chunqiang Zhuangd,*(), Xin Lie,*()   

  1. aKey Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
    bSchool of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    cHubei Key Laboratory Low Dimens Optoelect Mat & Devices, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
    dInstitute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
    eInstitute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2024-07-24 Accepted:2024-10-11 Online:2025-01-18 Published:2025-01-02
  • Contact: * E-mail: lishijie@zjou.edu.cn (S. Li), chunqiang.zhuang@bjut.edu.cn (C. Zhuang), xinli@scau.edu.cn (X. Li).
  • Supported by:
    National Natural Science Foundation of China(U1809214);Natural Science Foundation of Zhejiang Province(LY20E080014);Natural Science Foundation of Zhejiang Province(LTGN23E080001);Science and Technology Project of Zhoushan(2022C41011)

摘要:

水体新兴有机污染物污染具有结构复杂、毒性高、降解难的特点, 现有的水体处理技术无法有效将其去除, 导致在环境中的残留问题日益严重, 成为人类生存面临的巨大危机. 光催化技术是一种高效、经济、环境友好的水污染治理方法, 该技术能够有效去除水体新兴有机污染物, 因而受到科研工作者的广泛关注, 但传统光催化材料的光利用率低、光生载流子复合严重和降解效率低, 严重制约了其工业化应用. 在众多催化剂中, S型异质结具有高氧化还原能力和快速光生载流子分离能力, 实现了强还原性电子和强氧化性空穴高效利用, 非常适合用于光催化净化水体.
本文采用溶剂热法制备了Mo-S键键合的Mn0.5Cd0.5S/Bi2MoO6 S型异质结, 其中Mn0.5Cd0.5S纳米粒子通过Mo-S键锚定在Bi2MoO6片上. 由于Mn0.5Cd0.5S和Bi2MoO6之间的化学键键合界面和费米能级差异, 形成了一个强的内部电场, 推动光生载流子遵循S型电荷转移机制. 重要的是, 界面间的Mo-S键作为原子级的电荷传输通道, 极大地抑制了Mn0.5Cd0.5S发生光腐蚀并有效抑制光生载流子的复合, 从而确保了催化剂展示出较好的光催化活性和稳定性. 此外, 接触角实验结果证明, Mn0.5Cd0.5S的引入有效提升了Bi2MoO6的亲水性能, 从而促进光催化反应. 瞬态光电流响应、电化学阻抗曲线、分子荧光光谱和紫外-可见光谱等光电化学性质结果表明, Mn0.5Cd0.5S/Bi2MoO6对阳光吸收的大幅增强、促进光生载流子的分离和实现了整个催化体系具有强的光氧化还原能力. 该催化剂能有效产生大量的•OH和•O2自由基, 明显强于Mn0.5Cd0.5S和Bi2MoO6. 因此, 在最佳反应条件下, 优化后的Mn0.5Cd0.5S/Bi2MoO6异质结材料表现出最佳的四环素(TC)的降解速率常数为0.0323 min‒1, 分别是Mn0.5Cd0.5S和Bi2MoO6的2.8和3.1倍. 与文献报道的催化剂相比, Mn0.5Cd0.5S/Bi2MoO6具有更强的TC降解能力. 更为重要的是, Mn0.5Cd0.5S/Bi2MoO6具有出色的抗干扰性能和稳定性. 自由基猝灭实验和电子顺磁共振测试发现•OH, h+和•O2活性物种共同参与了光催化降解抗生素的反应, 其中h+和•O2发挥主导作用. 通过高效液相色谱-质谱联用仪和毒性分析软件对TC的降解产物及其毒理性进行了系统分析, 提出了TC的降解路径和证实了该催化剂能够有效降低抗生素溶液的生物毒性. 此外, 还系统分析了Mn0.5Cd0.5S/Bi2MoO6光催化反应机理.

综上, 本文提出了采用设计界面化学键键合的S型异质结策略能够有效提升材料的催化性能, 为构筑高效光催化材料用于环境治理提供参考.

关键词: Mn0.5Cd0.5S/Bi2MoO6, 界面化学键, S型异质结, 新兴有机污染物, 内建电场, 光催化

Abstract:

Inefficient photo-carrier separation and sluggish photoreaction dynamics appreciably undermine the photocatalytic decontamination efficacy of photocatalysts. Herein, an S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction with interfacial Mo-S chemical bond is designed as an efficient photocatalyst. In this integrated photosystem, Bi2MoO6 and Mn0.5Cd0.5S function as oxidation and reduction centers of Mn0.5Cd0.5S/Bi2MoO6 microspheres, respectively. Importantly, the unique charge transfer mechanism in the chemically bonded S-scheme heterojunction with Mo-S bond as atom-scale charge transport highway effectively inhibits the photocorrosion of Mn0.5Cd0.5S and the recombination of photo-generated electron-hole pairs, endowing Mn0.5Cd0.5S/Bi2MoO6 photocatalyst with excellent photocatalytic decontamination performance and stability. Besides, integration of Mn0.5Cd0.5S nanocrystals into Bi2MoO6 improves hydrophilicity, conducive to the photoreactions. Strikingly, compared with Mn0.5Cd0.5S and Bi2MoO6, the Mn0.5Cd0.5S/Bi2MoO6 unveils much augmented photoactivity in tetracycline eradication, among which Mn0.5Cd0.5S/Bi2MoO6-2 possesses the highest activity with the rate constant up to 0.0323 min‒1, prominently outperforming other counterparts. This research offers a chemical bonding engineering combining with S-scheme heterojunction strategy for constructing extraordinary photocatalysts for environmental purification.

Key words: Mn0.5Cd0.5S/Bi2MoO6, Interfacial chemical bond, S-scheme heterojunction, Emerging organic contaminants, Internal electric field, Photocatalysis