催化学报 ›› 2025, Vol. 68: 230-245.DOI: 10.1016/S1872-2067(24)60187-7

• 论文 • 上一篇    下一篇

超大孔分子筛ZEO-1催化甲缩醛羰基化及歧化反应: 反应网络与机理研究

高绍磊a,b, 卢鹏c, 亓良a,*(), 王莹利a, 李华a, 叶茂a, Valentin Valtchevd, Alexis T. Belle,f, 刘中民a,b,*()   

  1. a中国科学院大连化学物理研究所, 洁净能源国家实验室, 低碳催化技术国家工程研究中心, 辽宁大连 116023, 中国
    b中国科学院大学, 中国科学院, 北京 100049, 中国
    c青岛生物能源与过程研究所, 分子筛材料研究组, 山东青岛 266101, 中国
    d卡昂大学,法国国立卡昂高等工程师学院, 法国国家科学研究中心, 催化与光谱化学实验室, 卡昂, 法国
    e劳伦斯伯克利国家实验室, 加利福尼亚州伯克利, 美国
    f加利福尼亚大学伯克利分校, 化学与生物分子工程系, 加利福尼亚州伯克利, 美国
  • 收稿日期:2024-10-23 接受日期:2024-11-25 出版日期:2025-01-18 发布日期:2025-01-02
  • 通讯作者: * 电子信箱: qlyanfei920@dicp.ac.cn (亓良), zml@dicp.ac.cn (刘中民).
  • 基金资助:
    国家自然科学基金(22472173);中国科学院青年创新促进会(2023193);山东能源研究院(SEI S202107);中国科学院青岛生物能源与过程研究所国际合作项目(202305)

Dimethoxymethane carbonylation and disproportionation over extra-large pore zeolite ZEO-1: Reaction network and mechanism

Shaolei Gaoa,b, Peng Luc, Liang Qia,*(), Yingli Wanga, Hua Lia, Mao Yea, Valentin Valtchevd, Alexis T. Belle,f, Zhongmin Liua,b,*()   

  1. aNational Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
    cThe ZeoMat Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
    dUniversité de Caen Normandie, ENSICAEN, CNRS, LCS, Caen 14000, France
    eLawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    fDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
  • Received:2024-10-23 Accepted:2024-11-25 Online:2025-01-18 Published:2025-01-02
  • Contact: * E-mail: qlyanfei920@dicp.ac.cn (L, Qi), zml@dicp.ac.cn (Z, Liu).
  • Supported by:
    National Natural Science Foundation of China(22472173);Youth Innovation Promotion Association, the Chinese Academy of Sciences(2023193);starting grant provided by Qingdao Institute of Bioenergy and Bioprocess Technology, the Shandong Energy Institute(SEI S202107);Qingdao Institute of Bioenergy and Bioprocess Technology International Collaboration Project(202305)

摘要:

甲缩醛羰基化反应产物甲氧基乙酸甲酯是生产乙醇酸、乙醇酸甲酯及乙二醇的前驱体. 乙二醇可作为化工原料, 也可直接应用于防冻剂和溶剂. 而乙醇酸或乙醇酸甲酯的聚合产物聚乙醇酸是生产可生物降解塑料的原料, 符合绿色化学和环境保护的发展要求, 应用前景广阔. 以甲缩醛羰基化为核心的乙醇酸、乙醇酸甲酯和乙二醇生产路径具有条件温和、效率较高和易于工业放大等优点. 当前研究仍局限于FAU是催化甲缩醛羰基化的最佳分子筛催化剂. 对具有高活性、高选择性和高稳定性的新型分子筛催化剂探索未见报道, 也是当前研究的重点和难点.
本文选择了近期在Science杂志新报道(Science, 2021, 374, 1605-1608)的含16元环的超大孔分子筛ZEO-1, 合成并将其用于甲缩醛羰基化反应. 首先与文献报道具有最佳单位点活性的FAU分子筛进行甲缩醛羰基化对比, 明确了ZEO-1分子筛催化甲缩醛羰基化高活性、高选择性和高稳定性的特征. 随后利用原位红外光谱观察了ZEO-1分子筛催化甲缩醛羰基化及其歧化副反应中间体甲氧基亚甲基、甲氧基乙酰基和甲酰基的动态演变过程, 并尝试将中间体表面生成量与反应活性和分子筛扩散性能相关联. 随后在近动力学条件下研究了一氧化碳和甲缩醛分压对甲缩醛羰基化及歧化活性的影响, 发现羰基化活性与一氧化碳分压呈线性相关而与甲缩醛分压呈负相关, 歧化活性与一氧化碳分压呈负相关而与甲缩醛分压呈正相关, 表明ZEO-1催化甲缩醛羰基化过程中歧化反应竞争的影响不可忽略. ZEO-1分子筛中活性位点同时分布于16×16元环, 16×12元环和12×12元环交叉位形成的笼中, 不同位点因所处反应空间尺寸的不同而具有明显不同的甲缩醛羰基化及歧化倾向性. 基于甲缩醛羰基化及歧化反应, 红外和动力学实验结果提出了ZEO-1不同位点催化甲缩醛羰基化及歧化的反应循环机理. 将16×16元环和16×12元环交叉位组成的尺寸较大的笼中的Brönsted酸中心定义为羰基化活性中心. 12×12元环交叉位组成的尺寸较小的笼中的Brönsted酸中心为歧化活性中心. 最后, 推导了甲缩醛羰基化及歧化动力学方程且提出的动力学方程结果与动力学实验规律相一致.
综上, 本工作探索了具有超大反应空间的ZEO-1分子筛催化甲缩醛羰基化反应, 明确了ZEO-1分子筛催化甲缩醛羰基化的高活性、高选择性和高稳定性. 分析了ZEO-1分子筛催化甲缩醛羰基化及歧化反应机理与动力学特征, 为甲缩醛羰基化分子筛催化剂的筛选改进提供了初步理论指导.

关键词: 甲缩醛羰基化, 甲缩醛歧化, 分子筛, 原位红外光谱, 动力学, 反应机理

Abstract:

Methyl methoxyacetate (MMAc) and methyl formate (MF) can be produced directly by heterogeneous zeolite-catalyzed carbonylation and disproportionation of dimethoxymethane (DMM), with near 100% selectivity for each process. Despite continuous research efforts, the insight into the reaction mechanism and kinetics theory are still in their nascent stage. In this study, ZEO-1 material, a zeolite with up to now the largest cages comprising 16×16-MRs, 16×12-MRs, and 12×12-MRs, was explored for DMM carbonylation and disproportionation reactions. The rate of MMAc formation based on accessible Brönsted acid sites is 2.5 times higher for ZEO-1 (Si/Al = 21) relative to the previously investigated FAU (Si/Al = 15), indicating the positive effect of spatial separation of active sites in ZEO-1 on catalytic activity. A higher MF formation rate is also observed over ZEO-1 with lower activation energy (79.94 vs. 95.19 kJ/mol) compared with FAU (Si/Al = 30). Two types of active sites are proposed within ZEO-1 zeolite: Site 1 located in large cages formed by 16×16-MRs and 16×12-MRs, which is active predominantly for MMAc formation, and Site 2 located in smaller cages for methyl formate/dimethyl ether formation. Kinetics investigation of DMM carbonylation over ZEO-1 exhibit a first-order dependence on CO partial pressure and a slightly inverse-order dependence on DMM partial pressure. The DMM disproportionation is nearly first-order dependence on DMM partial pressure, while it reveals a strongly inverse dependence with increasing CO partial pressure. Furthermore, ZEO-1 exhibits good catalytic stability, and almost no deactivation is observed during the more than 70 h test with high carbonylation selectivity of above 89%, due to the well-enhanced diffusion property demonstrated by intelligent-gravimetric analysis.

Key words: Dimethoxymethane carbonylation, Dimethoxymethane disproportionation, Zeolite, In-situ IR, Kinetic, Reaction mechanism