催化学报 ›› 2024, Vol. 66: 20-52.DOI: 10.1016/S1872-2067(24)60123-3
收稿日期:
2024-07-25
接受日期:
2024-08-28
出版日期:
2024-11-18
发布日期:
2024-11-10
通讯作者:
*电子信箱: guanjq@jlu.edu.cn (管景奇).
基金资助:
Received:
2024-07-25
Accepted:
2024-08-28
Online:
2024-11-18
Published:
2024-11-10
Contact:
*E-mail: About author:
Jingqi Guan (Jilin University) was invited as a young member of the 6th Editorial Board of Chin. J. Catal. and the 5th Editorial Board of Acta Phys.-Chim. Sin. Prof. Jingqi Guan received his B.A. degree in 2002 and Ph.D. degree in 2007 from Jilin University. He carried out postdoctoral research in the University of California at Berkeley from 2012 to 2013 and in Dalian Institute of Chemical Physics, Chinese Academy of Sciences from 2014 to 2018. His research interests are in engineering single-atom catalysts and 2D materials for electrocatalysis, renewable energy, and biosensors. He has published more than 210 peer-reviewed papers.
Supported by:
摘要:
氨不仅是一种高能量密度载体, 也是一种良好的储氢物质, 在可再生能源存储等方面具有广阔的应用前景. Haber-Bosch工艺为全世界贡献了90%的NH3产量, 但该方法依赖天然气等化石资源作为能源, 在加速资源消耗的同时也加剧环境污染. 为解决该问题, 在过去几十年中, 科学家们探索出了一些合成氨的新途径. 电催化氮还原反应(ENRR)因具备绿色环保、低能耗以及反应条件更加温和等优势而备受关注, 但电催化剂存在催化效率较低、稳定性较差、产率和法拉第效率不高等缺点. 因此, 对电催化剂进行合理的设计与改造以达到预想目标是目前面临的主要挑战.
本文总结了ENRR电催化剂的研究进展以及一些常用的设计策略, 并对该领域的未来发展进行了展望. 简要回顾了合成氨的发展历程并将其他催化方式与电催化进行了对比, 详述了电催化的优势与不足. 随后讨论了主流的ENRR机制以及理论计算在反应机理解析中取得的重要进展. 还对ENRR材料进行了大致的分类, 阐述了它们的优势与不足并在此基础上提出了ENRR催化剂的设计原则应当围绕氮气(N2)的吸附与活化以及抑制析氢反应(HER)的发生这两个方面. 此外, 重点介绍了d带中心理论, 并由此展开了对ENRR催化剂的结构调控策略的讨论. 每个调控策略都可通过改变催化剂的电子结构来实现整体性能的优化. 掺杂策略以及缺陷工程不仅能调节活性位点周围的电子结构, 改善电催化剂的局部环境, 还可以提高电子传递效率, 优化反应物及其中间体的吸附与活化并降低反应能垒. 界面工程则是优化了材料之间的相互作用. 通过调节反应途径使电催化剂在复杂的反应环境中表现出更高的活性和选择性则是应变工程的亮点. 通过整合这些调控策略可以实现从原子尺度到宏观结构的综合优化, 最终达到提高ENRR催化剂整体性能的目的. 最后介绍了电催化剂在实际中的应用, 重点讨论了流动电化学池子的开发与设计.
综上, 本文对ENRR的结构调控策略进行了详细的总结与分类, 深入探索了各种结构调控策略的侧重点与固有的局限性. 本文旨在为后续开发与改造出更加高效的ENRR电催化剂提供有价值的参考与借鉴.
陈思雨, 管景奇. 氮还原电催化剂的结构调控策略[J]. 催化学报, 2024, 66: 20-52.
Siyu Chen, Jingqi Guan. Structural regulation strategies of nitrogen reduction electrocatalysts[J]. Chinese Journal of Catalysis, 2024, 66: 20-52.
Electrocatalyst | Electrolyte | Potential (V vs. RHE) | NH3 yield | Faraday efficiency (%) | Ref. |
---|---|---|---|---|---|
Pd-NTA-NF | 0.1 mol L-1 Na2SO4 | -0.15 | 5.45 μg h-1 cm-2 | 20.10 | [ |
La2O3@C | 0.1 mol L-1 Na2SO4 | -0.3 | 20.59 μg h-1 mg-1 | 17.10 | [ |
MoS2 | 0.1 mol L-1 Na2SO4 | -0.5 | 8.08 × 10-11 mol s-1 cm-2 | 1.17 | [ |
FeRu-CNS | 0.1 mol L-1 Na2SO4 | -0.2 | 43.9 μg h-1 mg-1 | 29.30 | [ |
V-C3N4 | 0.1 mol L-1 Na2SO4 | -0.3 | 31.41 μgNH3 h-1 mgcat-1 | 76.53 | [ |
V-NG | 0.1 mol L-1 Na2SO4 | -0.2 | 19.88 μgNH3 h-1 mgcat-1 | 13.69 | [ |
B-Mo2C/NC-50 | 0.5 mol L-1 K2SO4 | -0.5 | 42.9 μg h-1 mg-1 | 36.90 | [ |
FL-MoS2-20 | 1 mol L-1 K2SO4 | -0.5 | 92.95 μg h-1 mg-1 | 20.80 | [ |
AuHNCs | 0.5 mol L-1 LiClO4 | -0.5 | 3.98 μg h-1 cm-2 | 30.20 | [ |
MoO3-x/MXene | 0.5 mol L-1 LiClO4 | -0.4 | 95.8 μg h-1 mg-1 | 21.20 | [ |
Cl-RGO | 0.05 mol L-1 H2SO4 | -0.3 | 0.9 μg h-1 mgcat-1 | 5.97 | [ |
Np-B13C12 | 0.05 mol L-1 H2SO4 | -0.05 | 91.28 μg h-1 mgcat-1 | 35.53 | [ |
2D-C3N4-NV | 0.1 mol L-1 HCl | -0.3 | 17.85μg h-1 mgcat-1 | 10.96 | [ |
D-FeN/C | 0.1 mol L-1 KOH | -0.4 | 24.8 μg h-1 mgcat-1 | 15.80 | [ |
Ru SAs/g-C3N4 | 0.5 mol L-1 NaOH | 0.05 | 23.0 μg mgcat-1 h-1 | 8.30 | [ |
Table 1 Comparison of NRR performance on various electrocatalysts.
Electrocatalyst | Electrolyte | Potential (V vs. RHE) | NH3 yield | Faraday efficiency (%) | Ref. |
---|---|---|---|---|---|
Pd-NTA-NF | 0.1 mol L-1 Na2SO4 | -0.15 | 5.45 μg h-1 cm-2 | 20.10 | [ |
La2O3@C | 0.1 mol L-1 Na2SO4 | -0.3 | 20.59 μg h-1 mg-1 | 17.10 | [ |
MoS2 | 0.1 mol L-1 Na2SO4 | -0.5 | 8.08 × 10-11 mol s-1 cm-2 | 1.17 | [ |
FeRu-CNS | 0.1 mol L-1 Na2SO4 | -0.2 | 43.9 μg h-1 mg-1 | 29.30 | [ |
V-C3N4 | 0.1 mol L-1 Na2SO4 | -0.3 | 31.41 μgNH3 h-1 mgcat-1 | 76.53 | [ |
V-NG | 0.1 mol L-1 Na2SO4 | -0.2 | 19.88 μgNH3 h-1 mgcat-1 | 13.69 | [ |
B-Mo2C/NC-50 | 0.5 mol L-1 K2SO4 | -0.5 | 42.9 μg h-1 mg-1 | 36.90 | [ |
FL-MoS2-20 | 1 mol L-1 K2SO4 | -0.5 | 92.95 μg h-1 mg-1 | 20.80 | [ |
AuHNCs | 0.5 mol L-1 LiClO4 | -0.5 | 3.98 μg h-1 cm-2 | 30.20 | [ |
MoO3-x/MXene | 0.5 mol L-1 LiClO4 | -0.4 | 95.8 μg h-1 mg-1 | 21.20 | [ |
Cl-RGO | 0.05 mol L-1 H2SO4 | -0.3 | 0.9 μg h-1 mgcat-1 | 5.97 | [ |
Np-B13C12 | 0.05 mol L-1 H2SO4 | -0.05 | 91.28 μg h-1 mgcat-1 | 35.53 | [ |
2D-C3N4-NV | 0.1 mol L-1 HCl | -0.3 | 17.85μg h-1 mgcat-1 | 10.96 | [ |
D-FeN/C | 0.1 mol L-1 KOH | -0.4 | 24.8 μg h-1 mgcat-1 | 15.80 | [ |
Ru SAs/g-C3N4 | 0.5 mol L-1 NaOH | 0.05 | 23.0 μg mgcat-1 h-1 | 8.30 | [ |
Reaction mechanism | Reaction mechanism | Electrocatalyst | Ref. |
---|---|---|---|
Dissociation mechanism | N2 + 2* → 2*N 2*N + 2e- + 2H* → 2*NH 2*NH + 2e- + 2H+ → 2NH3 + 2* | Co/CeN | [ |
Association mechanism (distal pathway) | N2 + * → *N2 *N2 + e- +H+ → *NNH *NNH + e- + H+ → *NNH2 *NNH2 + e- + H* → *N + NH3 *N + e- + H* → *NH *NH + e- + H+ → *NH2 *NH2 + e- + H+ → NH3 + * | PdFe3 | [ |
Association mechanism (alternative path) | N2 + * → *N2 *N2 + e- + H+ → *NNH *NNH + e- + H+ → *NHNH *NHNH + e- + H+ → *NHNH2 *NHNH2 + e- + H+ → *NH2NH2 *NH2NH2 + e- + H+ → *NH2 + NH3 *NH2 + e- + H+ → NH3+ * | C-SiP-NSs | [ |
Association mechanism (enzymatic mechanism) | N2+ * → *NN* *NN* + e- + H* → *NH*N *NH*N + e- + H+ → *NH*NH *NH*NH + e- + H+ → *NH2*NH *NH2*NH + e- + H+ → *NH2*NH2 *NH2*NH2 + e- + H+ → *NH2 + NH3 *NH2 + e- + H+ → NH3 + * | Re@MoS2 | [ |
MvK mechanism | S-N + 3e- + 3H+ → S-NH3 S-NH3 → S-NV + NH3 S-NV + N2 → NΞN-S NΞN-S + 3H+ + 3e- → NH3…N-S NH3…N-S → N-S + NH3 | Fe3Mo3N | [ |
Table 2 Basic processes of different ENRR mechanisms.
Reaction mechanism | Reaction mechanism | Electrocatalyst | Ref. |
---|---|---|---|
Dissociation mechanism | N2 + 2* → 2*N 2*N + 2e- + 2H* → 2*NH 2*NH + 2e- + 2H+ → 2NH3 + 2* | Co/CeN | [ |
Association mechanism (distal pathway) | N2 + * → *N2 *N2 + e- +H+ → *NNH *NNH + e- + H+ → *NNH2 *NNH2 + e- + H* → *N + NH3 *N + e- + H* → *NH *NH + e- + H+ → *NH2 *NH2 + e- + H+ → NH3 + * | PdFe3 | [ |
Association mechanism (alternative path) | N2 + * → *N2 *N2 + e- + H+ → *NNH *NNH + e- + H+ → *NHNH *NHNH + e- + H+ → *NHNH2 *NHNH2 + e- + H+ → *NH2NH2 *NH2NH2 + e- + H+ → *NH2 + NH3 *NH2 + e- + H+ → NH3+ * | C-SiP-NSs | [ |
Association mechanism (enzymatic mechanism) | N2+ * → *NN* *NN* + e- + H* → *NH*N *NH*N + e- + H+ → *NH*NH *NH*NH + e- + H+ → *NH2*NH *NH2*NH + e- + H+ → *NH2*NH2 *NH2*NH2 + e- + H+ → *NH2 + NH3 *NH2 + e- + H+ → NH3 + * | Re@MoS2 | [ |
MvK mechanism | S-N + 3e- + 3H+ → S-NH3 S-NH3 → S-NV + NH3 S-NV + N2 → NΞN-S NΞN-S + 3H+ + 3e- → NH3…N-S NH3…N-S → N-S + NH3 | Fe3Mo3N | [ |
Fig. 2. Schematic diagram of ENRR on the surface of a electrocatalyst. (a) Dissociation mechanism; (b) association distal mechanism; (c) association alternating mechanism; (d) enzymatic mechanism.
Fig. 3. (a) Free energy graph of ENRR on PdFe3@G. Reproduced with permission [62]. Copyright 2023, Wiley-VCH GmbH. (b) Analysis of charge density difference of N2 on SiP. (c) N2 free energy diagram of alternate pathways at the C-SiP NSs zigzag Si site at 0 V. (d) Each step corresponds to the atomic configuration. Reproduced with permission [63]. Copyright 2022, Wiley-VCH GmbH.
Fig. 4. (a) Structure diagram of FeMo-co. (b) A comparison of the distal and alternating pathways, along with a diagram illustrating the differences in intermediates. Reproduced with permission [69]. Copyright 2011, American Chemical Society. (c) Volcanic maps of stepped and flat transition metal surfaces. Reproduced with permission [67]. Copyright 2024, ELSEVIER B.V. and Science Press.
Basic synthesis method | Strength | Weakness | Electrocatalyst | Ref. |
---|---|---|---|---|
Hydrothermal synthesis | simple operation, uniform size, high purity, and controllable morphology | long experiment period, and prone to agglomeration | Fe2(MoO4)3/C | [ |
Sol-gel method | high product purity | the material is prone to deformation during heat treatment, and the composition and morphology of the product are affected by the solvent expulsion | BaCe0.80Gd0.10Sm0.10O3-δ | [ |
Electrospinning technology | it can obtain finer-sized nanofibers with stronger material stability and more functionalities | the parameters of the experiment are very strict | FeNi-Co@CM | [ |
In-situ growth method | mild reaction condition, good catalytic effect, and low production cost | it requires precise control of the catalyst's growth conditions and a thorough understanding of its surface properties | nPd/NF | [ |
Table 3 Basic synthesis methods for ENRR materials.
Basic synthesis method | Strength | Weakness | Electrocatalyst | Ref. |
---|---|---|---|---|
Hydrothermal synthesis | simple operation, uniform size, high purity, and controllable morphology | long experiment period, and prone to agglomeration | Fe2(MoO4)3/C | [ |
Sol-gel method | high product purity | the material is prone to deformation during heat treatment, and the composition and morphology of the product are affected by the solvent expulsion | BaCe0.80Gd0.10Sm0.10O3-δ | [ |
Electrospinning technology | it can obtain finer-sized nanofibers with stronger material stability and more functionalities | the parameters of the experiment are very strict | FeNi-Co@CM | [ |
In-situ growth method | mild reaction condition, good catalytic effect, and low production cost | it requires precise control of the catalyst's growth conditions and a thorough understanding of its surface properties | nPd/NF | [ |
Fig. 8. (a) Schematic diagram of electronic feedback mechanism. Reproduced with permission [85]. Copyright 2023, American Chemical Society. (b) Partial state density of penta-TiP in a 2 × 2 cell. Reproduced with permission [88]. Copyright 2019, Royal Society of Chemistry. (c) The isosurface of the deformed charge density seen from the top view. (d) The deformed charge density of *NNH. Reproduced with permission [90]. Copyright 2018, WILEY-VCH.
Fig. 9. (a) Free energy scale of NH3 released by reducing metal nitrides. Reproduced with permission [93]. Copyright 2015, Royal Society of Chemistry. (b) Magnetic susceptibility of FePPc. (c) Magnetic susceptibility of FeMoPPc. (d) Diagram of N2 binding to transition metal. Reproduced with permission [94]. Copyright 2021, Wiley-VCH GmbH. (e) Calculated projected state density. (f) The charge differential density of N2 adsorbed on B doped C2N. Reproduced with permission [95]. Copyright 2019, Royal Society of Chemistry. (g) State density of absorbed *N2 on 2D C3N4 and 2D C3N4-NV. (h) Differential charge density on 2D C3N4 and 2D C3N4-NV. Reproduced with permission [56]. Copyright 2021, ELSEVIER. (i) PDOS adsorbing B atoms before and after N2 molecules. (j) Electron density difference of N2 molecule at B2 site. Reproduced with permission [55]. Copyright 2021, Wiley-VCH GmbH.
Fig. 10. (a) DOS display of Co, P, N in BPBL-Co-NNH. (b) DOS of P and N in BPBL-NNH. (c) Change in bond length of N2 molecule during reduction. Reproduced with permission [102]. Copyright 2021, ELSEVIER B.V. and Science Press. (d) XRD comparison of phenyldiene and al-phenyldiene exposed for 7 days at 90% relative humidity. (e) Raman spectrogram of phenylene and al-phenylene exposed for 7 days at 90% relative humidity. Reproduced with permission [103]. Copyright 2024, Wiley-VCH GmbH. (f) Schematic diagram of coupling of BP quantum dots with MnO2 nanosheets. Reproduced with permission [104]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 12. (a) Reducing the concentration of protons in bulk solution to limit the rate of proton transfer. (b) Increasing the barrier of proton transfer to the surface to limit the proton transfer rate. (c) Limiting electron transport rates by requiring electrons to pass through thin insulators. (d) The use of light absorbers to provide a slow flow of electrons to limit the electron transport rate. Reproduced with permission [77]. Copyright 2016, American Chemical Society.
Fig. 13. (a) PDOS of Ru atoms on Ru SAs/g-C3N4 and Ru (0001). (b) Reaction free energy path of NRR on Ru (0001). Reproduced with permission [58]. Copyright 2019, WILEY-VCH. (c) Synthetic diagram of FeRu-CNS. (d) Fe-d orbital PDOS in FeN4 and FeRu-CNS. Reproduced with permission [48]. Copyright 2023, Royal Society of Chemistry. (e) Volcanic relationship between △Gmax and △d-p. Reproduced with permission [117]. Copyright 2023, John Wiley & Sons Australia, Ltd.
Fig. 14. (a,b) PDOS of Fe2(DOBDC) and Fe2Cl2(BBTA) before and after doping Mo. (c) PDOS of Mo, coordination atoms and *NN after N2 adsorption on Mo (II)-Fe2F2(BBTA), Mo (II)-Fe2Cl2(BBTA) and Mo(II)-Fe2Br2(BBTA). (d) Enhanced N2 activation diagram. (e) Charge transfer diagram of Fe-X-Mo. Reproduced with permission [120]. Copyright 2022, American Chemical Society. (f,g) N2 adsorbs to the Bader charge structure of B-Mo2C and β-Mo2C. Reproduced with permission [50]. Copyright 2022, Wiley-VCH GmbH.
Fig. 15. (a) State density and d-band center diagram of MoS2 at different VS concentrations. (b) △G and *N-*N bond lengths as d-band center functions. Reproduced with permission [51]. Copyright 2023, Elsevier B.V. (c) Difference in charge density of N2 adsorbed on MoO3/MXene and MoO3-x/MXene. (d) εd of Mo-3d in MoO3/MXene and MoO3-x/MXene. (e) Charge density differences. (f) NH3 yield of MoO3/MXene, MoO3-x/MXene, MoO3 and MoO3-x. Reproduced with permission [53]. Copyright 2021, Wiley-VCH GmbH.
Fig. 16. (a) AES spectral N signals of Ni/CeN and CeN before and after the NRR. Reproduced with permission [126]. Copyright 2020, American Chemical Society. (b,c) PDOS of Fe atoms in D states and N atoms in p states of FeN4-C and D-FeN4-C. (d) Schematic diagram of electron density differences between nitrogen-containing intermediates at FeN4-C and D-FeN4-C. Reproduced with permission [57]. Copyright 2022, Wiley-VCH GmbH.
Fig. 17. (a,b) The d orbital PDOS of Rh in Rh@SnO2 and Rh (111). Reproduced with permission [131]. Copyright 2022, American Chemical Society. (c) Change of work function on NPG@SnS2 and SnS2 (101) surfaces. (d) The energy of *H on S and on Sn. (e) Total accumulation of charge in the SnS2 layer and total consumption in the NPG layer. (f) Charge dissipation and accumulation on a single atom. (g) Overall shift of charge density from NPG layer to SnS2 layer. Reproduced with permission [132]. Copyright 2021, American Chemical Society.
Fig. 19. (a) The d orbital changes of Ti before and after N2 adsorption at 2.5% tensile strain. (b) The relationship between N-N distance and charge transfer (CT). (c) Relationship between △E*(N2) and the adsorption energies of *NNH, *NNH2, *N, *NH and *NH3. Reproduced with permission [138]. Copyright 2023, Wiley-VCH GmbH.
Fig. 20. (a) OV-BP-BiVO4 hyacanthosphere heterogenous combination diagram. (b,c) XRD comparison of OV-BP-BiVO4, BP-BIVO4 and BP. (d) XPS comparison diagram of V 2p in OV-BP-BiVO4, BP-BIVO4 and BP. Reproduced with permission [143]. Copyright 2022, Elsevier Inc. All rights reserved.
Fig. 21. (a) Diagram of BP/FeP4 heterostructure preparation. (b) Adsorption diagram of N2 and H in BP/FeP4 heterostructure. Reproduced with permission [144]. Copyright 2022, Wiley-VCH GmbH.
Fig. 22. (a) Application of Ru/Mo2C-NCNTs in Li-N2 cells. (b) Complete discharge/charging curve of Ru/Mo2C-NCNTs. (c) Cyclic diagram of Ru/Mo2C-NCNTs. (d) Characterization of Ru/Mo2C-NCNTs compared with other electrocatalysts. Reproduced with permission [146]. Copyright 2022, Elsevier B.V.
Fig. 23. (a) Octahedral d orbital splitting process. Reproduced with permission [150]. Copyright 2024, Wiley-VCH GmbH. (b-d) PDOS of N2 molecules with different adsorption structures in Fe@Mo2CS2. (e,f) The difference in charge density between vertical and horizontal adsorption structures of N2 molecules in Fe@Mo2CS2. (g) Gibbs free energy of N2 molecule in horizontal adsorption configuration. Reproduced with permission [149]. Copyright 2022, The Royal Society of Chemistry.
Fig. 24. (a) Schematic diagram of FeSA-NSC-900 synthesis. (b,c) FeN4 and FeN3S1 PDOS diagram. (d) Molecular orbital diagram of N2 in FeN4 and FeN3S1 and spin configuration of Fe. Reproduced with permission [151]. Copyright 2022, Wiley-VCH GmbH.
Fig. 25. (a) Schematic diagram of solid-solution two-phase interface. (b) Diagram of gas-solid-liquid three-phase interface. (c) Schematic diagram of some NRR devices. (d) Ammonia yield and FE of Pd/ACC catalysts at different potentials. Reproduced with permission [154]. Copyright 2019, Haiyan Science and Technology Review Publishing. (e,f) Hydrophilic and hydrophobic interface diagram. Reproduced with permission [155]. Copyright 2020, Wiley-VCH GmbH.
Fig. 27. (a,b) Schematic diagram of working electrode crystal deposition without EtOH and LiBF4. Reproduced with permission [160]. Copyright 2024, The Royal Society of Chemistry. (c) Recovery test using Ni as cathode. Reproduced with permission [161]. Copyright 2024, Elsevier B.V. (d) The ESP of THF molecule was determined by DFT. (e) Probability distribution diagram of linear ether on lithium plate. Reproduced with permission [162]. Copyright 2023, American Chemical Society.
Fig. 28. (a-d) Diagram of unseparated cell (NS), liquid-liquid cell (L-L), gas-liquid (G-L) cell, and gas-gas (G-G) cell. (e) Diagram of a three-chamber cell (G-L-L).
Fig. 29. (a) FE at -0.8 V vs. NHE. (b-d) Diagram of binding energy and bond distance of N2 molecule under different anions. (e) Ammonia yields at -0.8 V vs. NHE. Reproduced with permission [173]. Copyright 2017, The Royal Society of Chemistry. (f) Schematic diagram of electrocatalytic synthesis of ammonia and acetone in ionic liquids. (g) Ammonia yield and FE. (h) Acetone yield and FE. Reproduced with permission [174]. Copyright 2021, The Royal Society of Chemistry.
Fig. 30. (a) Effects of different interface structures on NRR. Reproduced with permission [165]. Copyright 2022, The Royal Society of Chemistry. (b) Fe1.0HTNs used to simulate the human "alveolar" diagram. Reproduced with permission [177]. Copyright 2021, The Royal Society of Chemistry. (c) Diagram of the superoxygenophilic electrode and the corresponding three-phase reaction region. Reproduced with permission [180]. Copyright 2022, Elsevier B.V.
|
[1] | 刘志远, 王长安, 杨平, 王薇, 高鸿毅, 安国庆, 刘斯奇, 陈娟, 郭婷婷, 徐鑫梦, 王戈. MOFs中Pd纳米粒子的微环境和电子结构调控增强双环戊二烯低温加氢活性[J]. 催化学报, 2024, 64(9): 112-122. |
[2] | 穆楠, 薄婷婷, 胡玉高, 徐瑞欣, 刘彦昱, 周伟. 基于铁电In2Se3极化切换的N2还原单原子催化剂[J]. 催化学报, 2024, 63(8): 244-257. |
[3] | 杜仕文, 章福祥. 密度泛函理论在光催化中的普遍应用[J]. 催化学报, 2024, 61(6): 1-36. |
[4] | 海广通, 富忠恒, 刘欣, 黄秀兵. 电催化还原氮制氨的最新进展[J]. 催化学报, 2024, 60(5): 107-127. |
[5] | 杜晨宇, 盛剑平, 钟丰忆, 何烨, 孙艳娟, 董帆. 光催化二氧化碳还原制多碳产物的先进光催化剂设计与机制: 现状与挑战[J]. 催化学报, 2024, 60(5): 25-41. |
[6] | 王杰, 陈怡和, 王宇达, 赵浩, 叶进裕, 程庆庆, 杨辉. 调控Ru的电子态以促进乙烯在酸中高选择性电氧化合成乙二醇[J]. 催化学报, 2024, 60(5): 376-385. |
[7] | 夏亚男, 迟京起, 唐俊恒, 刘晓斌, 肖振宇, 赖建平, 王磊. 阴离子空位在析氧反应电催化剂中的研究进展[J]. 催化学报, 2024, 66(11): 110-138. |
[8] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[9] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[10] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[11] | 王娇, 朱芳芳, 陈必义, 邓爽, 胡博琛, 刘洪, 武猛, 郝金辉, 李龙华, 施伟东. B原子掺杂调控CuIn纳米合金电子结构以实现电化学CO2还原宽电位活性[J]. 催化学报, 2023, 49(6): 132-140. |
[12] | 杜乘风, 胡尔海, 余泓, 颜清宇. 二维电催化剂的局域电子调控策略[J]. 催化学报, 2023, 48(5): 1-14. |
[13] | 刘润泽, 邵雪, 王畅, 戴卫理, 关乃佳. 甲醇制烃反应机理: 基础及应用研究[J]. 催化学报, 2023, 47(4): 67-92. |
[14] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[15] | 刘丹卿, 张丙兴, 赵国强, 陈建, 潘洪革, 孙文平. 原位电化学扫描探针显微镜技术在电催化领域的应用进展[J]. 催化学报, 2023, 47(4): 93-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||