催化学报 ›› 2024, Vol. 66: 20-52.DOI: 10.1016/S1872-2067(24)60123-3

• 综述 • 上一篇    下一篇

氮还原电催化剂的结构调控策略

陈思雨, 管景奇*()   

  1. 吉林大学化学学院, 物理化学研究所, 吉林长春 130021
  • 收稿日期:2024-07-25 接受日期:2024-08-28 出版日期:2024-11-18 发布日期:2024-11-10
  • 通讯作者: *电子信箱: guanjq@jlu.edu.cn (管景奇).
  • 基金资助:
    国家自然科学基金(22075099);吉林省自然科学基金(20220101051JC)

Structural regulation strategies of nitrogen reduction electrocatalysts

Siyu Chen, Jingqi Guan*()   

  1. Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, Jilin, China
  • Received:2024-07-25 Accepted:2024-08-28 Online:2024-11-18 Published:2024-11-10
  • Contact: *E-mail: guanjq@jlu.edu.cn (J. Guan).
  • About author:Jingqi Guan (Jilin University) was invited as a young member of the 6th Editorial Board of Chin. J. Catal. and the 5th Editorial Board of Acta Phys.-Chim. Sin. Prof. Jingqi Guan received his B.A. degree in 2002 and Ph.D. degree in 2007 from Jilin University. He carried out postdoctoral research in the University of California at Berkeley from 2012 to 2013 and in Dalian Institute of Chemical Physics, Chinese Academy of Sciences from 2014 to 2018. His research interests are in engineering single-atom catalysts and 2D materials for electrocatalysis, renewable energy, and biosensors. He has published more than 210 peer-reviewed papers.
  • Supported by:
    National Natural Science Foundation of China(22075099);Natural Science Foundation of Jilin Province(20220101051JC)

摘要:

氨不仅是一种高能量密度载体, 也是一种良好的储氢物质, 在可再生能源存储等方面具有广阔的应用前景. Haber-Bosch工艺为全世界贡献了90%的NH3产量, 但该方法依赖天然气等化石资源作为能源, 在加速资源消耗的同时也加剧环境污染. 为解决该问题, 在过去几十年中, 科学家们探索出了一些合成氨的新途径. 电催化氮还原反应(ENRR)因具备绿色环保、低能耗以及反应条件更加温和等优势而备受关注, 但电催化剂存在催化效率较低、稳定性较差、产率和法拉第效率不高等缺点. 因此, 对电催化剂进行合理的设计与改造以达到预想目标是目前面临的主要挑战.

本文总结了ENRR电催化剂的研究进展以及一些常用的设计策略, 并对该领域的未来发展进行了展望. 简要回顾了合成氨的发展历程并将其他催化方式与电催化进行了对比, 详述了电催化的优势与不足. 随后讨论了主流的ENRR机制以及理论计算在反应机理解析中取得的重要进展. 还对ENRR材料进行了大致的分类, 阐述了它们的优势与不足并在此基础上提出了ENRR催化剂的设计原则应当围绕氮气(N2)的吸附与活化以及抑制析氢反应(HER)的发生这两个方面. 此外, 重点介绍了d带中心理论, 并由此展开了对ENRR催化剂的结构调控策略的讨论. 每个调控策略都可通过改变催化剂的电子结构来实现整体性能的优化. 掺杂策略以及缺陷工程不仅能调节活性位点周围的电子结构, 改善电催化剂的局部环境, 还可以提高电子传递效率, 优化反应物及其中间体的吸附与活化并降低反应能垒. 界面工程则是优化了材料之间的相互作用. 通过调节反应途径使电催化剂在复杂的反应环境中表现出更高的活性和选择性则是应变工程的亮点. 通过整合这些调控策略可以实现从原子尺度到宏观结构的综合优化, 最终达到提高ENRR催化剂整体性能的目的. 最后介绍了电催化剂在实际中的应用, 重点讨论了流动电化学池子的开发与设计.

综上, 本文对ENRR的结构调控策略进行了详细的总结与分类, 深入探索了各种结构调控策略的侧重点与固有的局限性. 本文旨在为后续开发与改造出更加高效的ENRR电催化剂提供有价值的参考与借鉴.

关键词: 氮还原反应, Haber-Bosch法, 检测方法, 电子结构, 反应机理

Abstract:

Ammonia is a carrier of high energy density and a good hydrogen storage substance. The Haber-Bosch process accounts for 90% of the world's ammonia production, which relies on natural gas and fossil resources as energy sources, not only polluting the ecological environment, but also accelerating the consumption of resources. To explore new ways to synthesize ammonia and reduce carbon emissions, electrocatalytic nitrogen reduction reaction (NRR) to produce ammonia has been emerged owing to the advantages of environmental protection, low energy consumption and mild reaction conditions. Here, we systematize the NRR mechanisms, including dissociation mechanism, association mechanism (involving distal pathway, alternative path, and enzymatic mechanism), and Mars-van Krevelen mechanism. Then, theoretical calculations, performance parameters, synthesis methods, and types of NRR electrocatalysts are detailedly introduced. Moreover, effective strategies to optimize the electronic structures of NRR electrocatalysts are emphatically discussed, including d-band center modulation (involving monoatomic dispersion, doping strategy, defect engineering, interface engineering, and strain effect), p-band center modulation, and other regulation strategies (involving construction of heterojunction, electron spin state modulation, phase interface engineering, and lithium ion mediation). Furthermore, we introduce NRR-related cell design and development. In addition, we evaluate relevant NRR experimental techniques, including N adsorption characterization techniques and methods for identification of active sites. Finally, the future challenges and opportunities concerning the improvement of NRR catalysts are outlined.

Key words: Nitrogen reduction reaction, Haber-Bosch process, Detection method, Electronic structure, Reaction mechanism