催化学报 ›› 2024, Vol. 64: 112-122.DOI: 10.1016/S1872-2067(24)60095-1

• 论文 • 上一篇    下一篇

MOFs中Pd纳米粒子的微环境和电子结构调控增强双环戊二烯低温加氢活性

刘志远a, 王长安a, 杨平c,*(), 王薇c, 高鸿毅a,b,*(), 安国庆a, 刘斯奇a, 陈娟a, 郭婷婷a, 徐鑫梦a, 王戈a,b,*()   

  1. a北京科技大学材料科学与工程学院, 北京材料基因组工程高精尖创新中心, 分子与微结构可控材料技术北京市重点实验室, 北京 100083
    b北京科技大学顺德创新学院, 广东顺德 528399
    c中石化石油化工科学研究院有限公司, 北京 100083
  • 收稿日期:2024-05-11 接受日期:2024-07-07 出版日期:2024-09-18 发布日期:2024-09-19
  • 通讯作者: * 电子信箱: hygao@ustb.edu.cn (高鸿毅),yangp.ripp@sinopec.com (杨平),gewang@ustb.edu.cn (王戈).
  • 基金资助:
    国家重点研发计划(2021YFB3500700);广东省自然科学基金(2022A1515011918)

Microenvironment and electronic state modulation of Pd nanoparticles within MOFs for enhancing low-temperature activity towards DCPD hydrogenation

Zhiyuan Liua, Changan Wanga, Ping Yangc,*(), Wei Wangc, Hongyi Gaoa,b,*(), Guoqing Ana, Siqi Liua, Juan Chena, Tingting Guoa, Xinmeng Xua, Ge Wanga,b,*()   

  1. aBeijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
    bShunde Innovation School, University of Science and Technology Beijing, Shunde 528399, Guangdong, China
    cSinopec Research Institute of Petroleum Processing Co., Ltd, SINOPEC, Beijing 100083, China
  • Received:2024-05-11 Accepted:2024-07-07 Online:2024-09-18 Published:2024-09-19
  • Contact: * E-mail: hygao@ustb.edu.cn (H. Gao),yangp.ripp@sinopec.com (P. Yang),gewang@ustb.edu.cn (G. Wang).
  • Supported by:
    National Key R&D Program of China(2021YFB3500700);Natural Science Foundation of Guangdong Province of China(2022A1515011918)

摘要:

当今世界能源消费仍以化石能源为主导, 导致其副产品供应量大幅增长. 目前, C3, C4, C6, C7及C8等馏分都已得到充分利用, 然而C5馏分利用率却相对较低. 双环戊二烯(DCPD)作为C5馏分的重要组成部分, 通过加氢制备四氢双环戊二烯(THDCPD)是合成高能量密度液体燃料的关键步骤. 这一过程不仅能带来显著的经济利益和社会效益, 还有助于提高资源利用率.

本文选取不同金属节点(Zr6O6或Ce6O6)与有机配体(含氮基团或不含氮基团)进行组合, 制备了一系列UiO-67 MOFs基体(UiO-67(Ce)-bpy, UiO-67(Ce), UiO-67(Zr)-bpy和UiO-67(Zr)), 再利用双溶剂法引入了客体Pd NPs, 并用于催化DCPD加氢反应. X射线粉末衍射、傅里叶变换红外光谱和透射电镜等结果证明了系列UiO-67 MOFs基体的成功合成, 且超小客体Pd NPs均匀地分散在UiO-67(Ce)-bpy, UiO-67(Ce)和UiO-67(Zr)-bpy上. X射线光电子能谱、氢气程序升温还原、拉曼光谱、CO漫反射傅里叶变换红外光谱等结果表明, 联吡啶基团和Ce6O6有助于调节Pd的微环境和局部电子结构: (1) 联吡啶基团不仅促进了Pd NPs的均匀分散, 还通过形成Pd-N桥促进了Pd和UiO-67 MOFs之间的电子转移; (2) 与Zr6团簇相比, 具有4f电子结构的Ce6团簇中可通过构建Ce-O-Pd界面来调节Pd的电子结构. Pd/UiO-67(Ce)-bpy可在温和条件 (50 oC, 10 bar) 下高效催化DCPD加氢反应, DCPD转化率大于99%, THDCPD选择性大于99%. 基于系统对比实验和表征结果, 推断了Pd/UiO-67(Ce)-bpy的催化机理. 该机理中, 高活性的Pdδ+物种与超小的Pd0物种紧密结合, 这两种活性位点的协同效应促进了对DCPD的高效催化. 具体而言, 高活性的Pdδ+物种作为Lewis酸位点, 能够接受来自富电子DCPD中C=C的π电子, 从而形成活化中间体; 同时, 高度分散的超小Pd0物种具有较强的H2裂解能力, 有助于产生大量的Pd-H. 与传统的单金属中心位点相比, 由于Pdδ+和Pd0紧密结合, Pd-H中的质子能够更快速地转移到相邻的C=C, 显著缩短了质子的转移距离. 这种双活性位点不仅进一步促进了DCPD的高效吸附, 还提高了质子利用率. 在DCPD加氢过程中, 环戊烯环中的CP位C=C可以在降冰戊片烯环中NB位C=C键加氢后被迅速激活, 从而大大缩短了DCPD加氢过程中降冰片烯吸附脱吸和环戊烯加氢的过程.

综上, 通过MOFs基体中金属节点和有机配体的匹配设计能够有效调节客体Pd物种的微环境和电子结构, 为研究宿主-客体相互作用以及设计高效加氢催化剂提供可借鉴的方法路径.

关键词: 界面调节, Pdδ+, 微环境, 电子结构, 加氢反应

Abstract:

Precise control of the local environment and electronic state of the guest is an important method of controlling catalytic activity and reaction pathways. In this paper, guest Pd NPs were introduced into a series of host UiO-67 MOFs with different functional ligands and metal nodes, the microenvironment and local electronic structure of Pd is modulated by introducing bipyridine groups and changing metal nodes (Ce6O6 or Zr6O6). The bipyridine groups not only promoted the dispersion Pd NPs, but also facilitated electron transfer between Pd and UiO-67 MOFs through the formation of Pd-N bridges. Compared with Zr6 clusters, the tunability and orbital hybridisation of the 4f electronic structure in the Ce6 clusters modulate the electronic structure of Pd through the construction of the Ce-O-Pd interfaces. The optimal catalyst Pd/UiO-67(Ce)-bpy presented excellent low-temperature activity towards dicyclopentadiene hydrogenation with a conversion of > 99% and a selectivity of > 99% (50 °C, 10 bar). The results show that the synergy of Ce-O-Pd and Pd-N promotes the formation of active Pdδ+, which not only enhances the adsorption of H2 and electron-rich C=C bonds, but also contributes to the reduction of proton migration distance and improves proton utilization efficiency. These results provide valuable insights for investigating the regulatory role of the host MOFs, the nature of host-guest interactions, and their correlation with catalytic performance.

Key words: Interface regulation, Pdδ+, Microenvironment, Electronic state, Hydrogenation