催化学报 ›› 2023, Vol. 53: 34-51.DOI: 10.1016/S1872-2067(23)64522-X
汪晋a,1, 萧祖耀b,1, 徐梽川b,c,*(), 任肖a,*(
)
收稿日期:
2023-07-13
接受日期:
2023-09-20
出版日期:
2023-10-18
发布日期:
2023-10-25
通讯作者:
*电子信箱: 作者简介:
1共同第一作者.
基金资助:
Jin Wanga,1, Justin Zhu Yeow Seowb,1, Zhichuan J. Xub,c,*(), Xiao Rena,*(
)
Received:
2023-07-13
Accepted:
2023-09-20
Online:
2023-10-18
Published:
2023-10-25
Contact:
*E-mail: About author:
Zhichuan J. Xu is a professor at the School of Materials Science and Engieering, Nanyang Technological University, and a fellow of the Academy of Engineering, Singapore. He is a member of the International Society of Electrochemistry (ISE), the Electrochemistry Society (ECS), and a fellow of the Royal Society of Chemistry (FRSC). He serves as the president of ECS Singapore Section. His major research interest is electrocatalysis.1 Contributed equally to this work.
Supported by:
摘要:
烯烃类化合物, 如乙烯和丙烯, 是工业生产的关键原料, 它们可以通过选择性氧化转化为环氧乙烷(EO)和环氧丙烷(PO)等高附加值的化学品. 目前, 烯烃类化合物转化主要通过热化学途径实现, 通常需要高温高压条件, 并可能导致过度氧化生成CO2, 因而选择性较低, 且对经济和环境效益不友好. 与此相对, 电催化反应以电能作为驱动力, 通过优化催化剂、电解液和反应电位等, 有望在相对温和的条件下提高反应的选择性和能量效率, 为高选择性烯烃氧化提供一种潜在策略. 然而, 当前烯烃的电化学选择性氧化的电流密度较低, 整体生产成本相对较高, 因此, 有必要进一步研发高效且稳定的电化学选择性氧化烯烃的体系.
本文综述了近期关于烯烃选择性电化学氧化的研究进展, 研究主要集中在两个方面: 一是烯烃在电极和电解液界面上直接进行电化学氧化的方法; 二是通过电化学反应原位生成氧化剂(如Cl2和H2O2)后, 再对烯烃进行氧化的间接方法. 对于烯烃的直接电化学氧化, 反应的选择性可以通过调控几何效应和电子效应来优化. 具体来说, 通过引入如氯离子这样的物种, 减少催化剂表面的可用活性位点数量, 从而降低烯烃在催化剂表面的双位吸附, 进一步降低过度氧化的可能性. 此外, 通过调整电催化剂的电子结构, 改变其表面氧物种的电子性质, 直接影响烯烃的加氧步骤, 从而实现对反应选择性的精准调控. 烯烃的氧化过程受限于其固有的缓慢反应动力学, 导致直接电氧化所能实现的电流密度有限. 为了提高该过程的速率, 可以引入氧化还原介导物种来实现烯烃的选择性氧化. 近期研究结果表明, 卤素和过氧化氢作为介导物种在烯烃的选择性氧化反应中表现较好. 利用先进的串联反应器技术, 过氧化氢介导乙烯氧化为乙二醇的电流密度已经可以达到500 mA cm-2.
深入探索了烯烃电化学氧化的前沿研究方向. 在烯烃的直接电氧化过程中, 电催化剂的选择和性质对整体反应性能具有决定性影响. 现有催化剂的化学成分、晶体学结构及合成方法上仍有较大的优化空间. 尤为重要的是, 关于烯烃电氧化的中间产物和反应途径, 仍存在诸多争议. 通过结合原位或在线的表征技术与密度泛函理论计算相结合, 对反应机理进行深入探讨, 将为反应体系的进一步完善提供理论支持. 在间接氧化策略方面, 反应器的设计与优化是研究的核心, 旨在提升整体反应效率并确保经济效益. 最后, 进行技术经济分析为确定烯烃电氧化在特定条件下的经济效益提供有力依据.
汪晋, 萧祖耀, 徐梽川, 任肖. 烯烃的选择性电化学氧化: 研究进展与前景[J]. 催化学报, 2023, 53: 34-51.
Jin Wang, Justin Zhu Yeow Seow, Zhichuan J. Xu, Xiao Ren. Selective electrochemical oxidation of alkene: Recent progress and perspectives[J]. Chinese Journal of Catalysis, 2023, 53: 34-51.
Scheme 1. (a-c) Possible mechanisms of alkene electrooxidation as exemplified by ethylene electrooxidation, and possible electrooxidation products of (d) ethylene, (e) propylene, (f) cyclohexene, (g) cyclooctene and (h) styrene.
Fig. 2. (a) Schematic illustration of modulating available active sites. (b) Proposed formation mechanism of *OCClO* species. Reprinted with permission from Ref. [16]. Copyright 2021, American Chemical Society. (c) Proposed catalytic cycles for overoxidation and partial oxidation of ethylene. Reprinted with permission from Ref. [16]. Copyright 2021, American Chemical Society. (d) Geometric effects of increasing surface coverage of organic species formed in situ on the catalyst. Reprinted with permission from Ref. [17]. Copyright 2019, Royal Society of Chemistry.
Fig. 3. (a) Schematics of O-correlated and OH-correlated pathways. (b) Proposed mechanism for cyclooctene electrooxidation catalyzed by manganese oxide nanoparticles. Reprinted with permission from Ref. [19]. Copyright 2019, American Chemical Society. (c) Ir-doping on manganese oxide as a strategy to increase selectivity of cyclooctene epoxidation through facilitating Mn oxidation as demonstrated by X-ray absorption spectra (XAS). Reprinted from Ref. [22] under Creative Commons Attribution 4.0 International License: https://creativecommons.org/ licenses/by/4.0/.
Fig. 4. (a) Schematics of O-correlated and OH-correlated pathways for propylene (Pr) epoxidation on Ag3PO4. C, H, Ag, O and P atoms are colored in gray, white, blue, red and light pink. (b) Free energy diagrams of O-correlated and OH-correlated pathways on (100), (110) and (111) facets of Ag3PO4. Reprinted with permission from Ref. [23]. Copyright 2022, Springer Nature. (c) Possible reaction mechanism for ethylene electrooxidation to ethylene glycol on PdO (100), possible dopant positions and DFT-calculated free energy change from State IV to State V after doping, where # represents undoped catalyst. Reprinted with permission from Ref. [24]. Copyright 2020, Springer Nature.
Fig. 5. (a) Schematic of halide-mediated and H2O2-mediated electrocatalytic system. (b) Schematic of the electrocatalytic system for chloride-mediated ethylene-to-EO conversion. CER mechanism on Co3O4 nanoparticles in neutral NaCl electrolyte either without (c) or with (d) the presence of ethylene. Reprinted with permission from Ref. [26]. Copyright 2020, American Chemical Society.
Fig. 6. (a) Schematic illustration of the photo-electro-heterogeneous integrated catalytic system. Reprinted with permission from Ref. [36]. Copyright 2020, Springer Nature. (b) Schematic of H2O2-mediated alkene oxidation in H-cell. Reprinted with permission from Ref. [37]. Copyright 2021, John Wiley and Sons. (c) Schematic of the solid electrolyte reactor for H2O2 production. Reprinted with permission from Ref. [38]. Copyright 2023, Springer Nature. (d) Schematic of integrated three-chamber solid electrolyte reactor for alkene oxidation [39]. (e) Configurations of interfacial and conventional coupling systems. Reprinted with permission from Ref. [39]. Copyright 2023, Elsevier.
Fig. 7. Comparison of the key parameters of different catalytic systems. The ‘direct’ and ‘indirect’ labels stand for direct and indirect catalytic systems respectively.
Fig. 8. (a) Schematics of internal and external reflection mode for in-situ FTIR characterization incorporating electrolyte, working electrode (WE), counter electrode (CE) and reference electrode (RE). Reprinted with permission from Ref. [60]. Copyright 2022, Elsevier. (b) Electrochemical cell for XAS measurements in fluorescence mode. Reprinted from Ref. [66]. Under Creative Commons Attribution 4.0 International License: https://creativecommons.org/licenses/by/4.0/. (c) Schematics of EC-MS coupled with a flow electrolyzer. Reprinted with permission from Ref. [67]. Copyright 2021, John Wiley and Sons. (d) Schematics of the microfluidic electrochemical reaction cell for in-situ SIMS experiments. Reprinted with permission from Ref. [68]. Copyright 2017, American Chemical Society.
Fig. 9. TEA of the production of EO (a), EG (b), PO (c), and PG (d) at a current density of 100 mA cm-2. TEA of the production of EO at current densities of 10 mA cm-2 (e) and 500 mA cm-2 (f).
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 吴殷琦, 陈倩倩, 陈琦, 耿强, 张巧玉, 郑宇璁, 赵晨, 张龑, 周佳海, 王斌举, 许建和, 郁惠蕾. 精准调控Baeyer-Villiger单加氧酶的底物选择性以避免拉唑亚砜的过氧化[J]. 催化学报, 2023, 51(8): 157-167. |
[9] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[10] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[11] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[12] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[13] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[14] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[15] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||