催化学报 ›› 2024, Vol. 66: 53-75.DOI: 10.1016/S1872-2067(24)60126-9

• 综述 • 上一篇    下一篇

高效海水电解和抑制氯化物氧化的阳极设计原则

宋龙a, 迟京起a,*(), 唐俊恒a, 刘晓斌a,c, 肖振宇a,b, 吴则星a,b, 王磊a,b,*()   

  1. a青岛科技大学化工学院, 生态化工工程重点实验室, 生态化工与绿色制造国际科技合作基地, 山东青岛 266042
    b青岛科技大学化学与分子工程学院, 山东青岛 266042
    c青岛科技大学环境与安全工程学院, 山东青岛 266042
  • 收稿日期:2024-07-10 接受日期:2024-08-28 出版日期:2024-11-18 发布日期:2024-11-10
  • 通讯作者: *电子信箱: chijingqi@qust.edu.cn (迟京起),inorchemwl@126.com (王磊).
  • 基金资助:
    国家自然科学基金(52072197);国家自然科学基金(52174283);国家自然科学基金(22301156);山东省自然科学基金(ZR2021QE165);山东省高校青年创新技术基金(2019KJC004);重大科技创新项目(2019JZZY020405);山东省自然科学基金重大基础研究项目(ZR2020ZD09);山东省“双百人才计划”(WST2020003);泰山学者青年才俊计划(tsqn201909114);山东省高校青年创新团队(202201010318)

Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation

Long Songa, Jingqi Chia,*(), Junheng Tanga, Xiaobin Liua,c, Zhenyu Xiaoa,b, Zexing Wua,b, Lei Wanga,b,*()   

  1. aKey Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
    bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
    cCollege of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2024-07-10 Accepted:2024-08-28 Online:2024-11-18 Published:2024-11-10
  • Contact: *E-mail: chijingqi@qust.edu.cn (J. Chi),inorchemwl@126.com (L. Wang).
  • About author:Jingqi Chi received her B.S. degree and Ph.D. degree from the State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China). She is currently an associate professor at Qing dao University of Science and Technology. Her research interests focus on the design and synthesis of transition metal-based nanostructures and porous MOFs materials for electrochemical applications.
    Lei Wang was awarded a Ph.D. in chemistry from Jilin University in 2006 under the supervision of Prof. Shouhua Feng. He worked as a Postdoctoral Scholar in Shandong University, the State Key Laboratory of Crystal Materials from 2008 to 2010. He is currently a professor at Qingdao University of Science and Technology. His research interests mainly focus on the design and synthesis of functional organic-inorganic hybrids and porous MOFs materials, as well as their applications in photocatalysis, electrocatalysis, lithium-ion battery, etc.
  • Supported by:
    National Natural Science Foundation of China(52072197);National Natural Science Foundation of China(52174283);National Natural Science Foundation of China(22301156);Natural Science Foundation of Shandong Province(ZR2021QE165);Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China(2019KJC004);Major Scientific and Technological Innovation Project(2019JZZY020405);Major Basic Research Program of Natural Science Foundation of Shandong Province(ZR2020ZD09);Shandong Province "Double-Hundred Talent Plan"(WST2020003);Taishan Scholar Young Talent Program(tsqn201909114);University Youth Innovation Team of Shandong Province(202201010318)

摘要:

氢能具有高热值和零排放的优势, 因此氢能成为解决能源短缺、取代传统化石能源的主要候选能源. 电解水制氢作为重要的绿色制氢技术, 尤其是利用可再生能源转化的电力制氢, 具有非常广阔的市场前景. 目前, 大部分的电解水体系采用的是纯水作为电解液, 忽略了储量丰富的海水资源. 然而, 海水成分极为复杂, 高浓度氯离子引发的竞争性氯氧化副反应(COR)不仅会产生腐蚀性更强的次氯酸根(ClO-), 还会严重影响析氧反应(OER)的活性和选择性. 因此, 开发耐腐蚀、高效的海水基电催化剂迫在眉睫.

本文首先总结了高浓度氯离子引起阳极催化剂腐蚀的过程与机理. 随后, 根据上述问题提出了四种调控策略, 具体包含构建选择性OER位点、抗腐蚀设计、小分子氧化反应(SMOR)取代OER和电解质调制. 其中, 构建选择性OER位点、SMOR取代OER以及电解质调制中的碱性设计能够有效抑制阳极COR的发生, 提高OER的选择性. 由于天然海水电解过程中会不可避免的产生ClO-腐蚀催化剂, 因此概括了阳极的耐腐蚀设计策略, 如调控催化剂的电子分布、原位产生缓冲层和设计不对称电解槽等, 有效缓解ClO-对阳极的腐蚀. 为进一步指导高效、耐腐蚀海水基电催化剂的设计与合成, 按照金属氢氧化物、金属氧化物、金属磷化物、金属硫化物/硒化物及其他类型电催化剂对近期报道的海水基电催化剂进行了分类和总结. 通过原位表征和密度泛函理论(DFT)研究并揭示其中的催化机理, 探究高选择性和稳定性的真正原因. 这些发现为过渡金属电催化剂和电解槽的合理设计提供了新的见解. 在可预见的未来, 可再生能源驱动的海水电解制氢是实现新旧能源转换的关键.

最后, 本文对实现工业海水电解进行了展望: (1) 健全直接海水电解的普适性理论来指导开发高活性和选择性的OER催化剂; (2) 开发和集成机器学习算法与自动化测试平台, 筛选具有高活性的经济型催化剂; (3) 采用简单的改性策略, 同步提升电解槽两端催化剂活性促进整体电解海水制氢; (4) 将阳极材料再生技术与电解槽的模块化设计相结合, 提高经济可行性. 希望本文能够为构建高选择性和耐腐蚀性的OER催化剂提供借鉴.

关键词: 氯氧化反应, 氯离子, 析氧反应选择性, 海水电解, 耐腐蚀策略

Abstract:

At present, seawater electrolysis powered by renewable energy stands as a crucial method for the industrial production of hydrogen. Given the abundance of seawater and its inherently high conductivity, seawater electrolysis earns an increasing interest. Nonetheless, challenges remain, such as the competitive chloride oxidation reaction (COR) caused by chloride ions (Cl-) and the corrosion of active sites, which hinder the industrial seawater electrolysis. In this review, we initially outline four design strategies aimed at avoiding the occurrence of COR: designing selective oxygen evolution reaction (OER) active sites, anti-corrosion strategies, small molecules oxidize reaction (SMOR) and adjusting electrolyte. Specifically, we compile approaches to enhance the OER selectivity and corrosion resistance in seawater electrolysis, including introducing anion buffer layer. Subsequently, we categorize reported OER catalysts based on their composition and summarize the mechanism underlying their high activity and stability. In conclusion, we address the future challenges and prospects of industrializing seawater electrolysis.

Key words: Chloride oxidation reaction, Chloride ions, Oxygen evolution reaction selectivity, Seawater electrolysis, Anti-corrosion strategies