催化学报 ›› 2024, Vol. 66: 110-138.DOI: 10.1016/S1872-2067(24)60157-9

• 综述 • 上一篇    下一篇

阴离子空位在析氧反应电催化剂中的研究进展

夏亚男a, 迟京起a,*(), 唐俊恒a, 刘晓斌a,c, 肖振宇a,b, 赖建平a,b, 王磊a,b,*()   

  1. a青岛科技大学化工学院,生态化工工程重点实验室, 生态化工与绿色制造国际科技合作基地, 山东青岛 266042
    b青岛科技大学化学与分子工程学院, 山东青岛 266042
    c青岛科技大学环境与安全工程学院, 山东青岛 266042
  • 收稿日期:2024-07-15 接受日期:2024-09-09 出版日期:2024-11-18 发布日期:2024-11-10
  • 通讯作者: *电子信箱: chijingqi@qust.edu.cn (迟京起),inorchemwl@qust.edu.cn (王磊).
  • 基金资助:
    国家自然科学基金(52072197);国家自然科学基金(52174283);国家自然科学基金(22301156);山东省自然科学基金(ZR2021QE165);山东省高校青年创新技术基金(2019KJC004);重大科技创新项目(2019JZZY020405);山东省自然科学基金重大基础研究项目(ZR2020ZD09);山东省“双百人才计划”(WST2020003);泰山学者青年才俊计划(tsqn201909114);山东省高校青年创新团队(202201010318)

Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction

Ya’nan Xiaa, Jingqi Chia,*(), Junheng Tanga, Xiaobin Liua,c, Zhenyu Xiaoa,b, Jianping Laia,b, Lei Wanga,b,*()   

  1. aKey Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
    bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
    cCollege of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2024-07-15 Accepted:2024-09-09 Online:2024-11-18 Published:2024-11-10
  • Contact: *E-mail: chijingqi@qust.edu.cn (J. Chi),inorchemwl@qust.edu.cn (L. Wang).
  • About author:Jingqi Chi received her B. S. degree and Ph.D. degree from the State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China). She is currently an associate professor at Qing dao University of Science and Technology. Her research interests focus on the design and synthesis of transition metal-based nanostructures and porous MOFs materials for electrochemical applications.
    Lei Wang was awarded a Ph.D. in chemistry from Jilin University in 2006 under the supervision of Prof. Shouhua Feng. He worked as a Postdoctoral Scholar in Shandong University, the State Key Laboratory of Crystal Materials from 2008 to 2010. He is currently a professor at Qingdao University of Science and Technology. His research interests mainly focus on the design and synthesis of functional organic-inorganic hybrids and porous MOFs materials, as well as their applications in photocatalysis, electrocatalysis, lithium-ion battery, etc.
  • Supported by:
    National Natural Science Foundation of China(52072197);National Natural Science Foundation of China(52174283);National Natural Science Foundation of China(22301156);Natural Science Foundation of Shandong Province(ZR2021QE165);Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China(2019KJC004);Major Scientific and Technological Innovation Project(2019JZZY020405);Major Basic Research Program of Natural Science Foundation of Shandong Province(ZR2020ZD09);Shandong Province "Double-Hundred Talent Plan"(WST2020003);Taishan Scholar Young Talent Program(tsqn201909114);University Youth Innovation Team of Shandong Province(202201010318)

摘要:

氢能被誉为“21世纪的终极能源”, 在灰氢、蓝氢、绿氢三条制氢路线中, 绿氢是唯一能够摆脱化石能源, 实现清洁零碳的制氢方式, 其中, 以可再生能源为动力的电解水制氢被视为实现绿色氢能生产的一种有效方法. 然而, 电解水技术受到阳极电催化析氧反应(OER)动力学活化能垒高和电子传输阻力大的限制. 近年来, 关于提升OER催化剂的策略不断出现, 包括元素掺杂、引入异质结构、应变工程和空位工程等, 其中空位工程中的阴离子空位工程被证明是一种提升OER活性的有效策略, 引起了广泛的关注.

本文系统总结了阴离子空位在OER电催化剂中的最新研究进展. 首先, 介绍了OER的发生机制. 总结了关于阴离子空位在OER机制过程中存在的活性与稳定性的平衡问题, 并概述了空位的引入方法, 在其基础上探讨了关于空位类型和空位浓度的调控策略. 通过重点介绍一些典型研究, 系统归纳了阴离子空位的表征方法(显微镜表征和光谱表征), 详细阐述了关于阴离子空位提升OER活性的作用机理, 主要包括提升电导率、调节电子结构和优化中间体吸附能. 此外, 还进一步探讨了关于提升富阴离子空位型OER催化剂稳定性的方式, 主要包括空位回填、空位再生和空位修饰. 其次, 按阴离子空位的类型进行了分类, 利用文献实例深入探讨了不同阴离子空位类型对OER电催化剂的影响机制. 最后, 提出了富阴离子空位型催化剂在OER过程中所面临的挑战, 例如催化反应是发生在催化剂表面的过程, 而空位在整个催化循环中也是动态变化的. 因此, 监测反应过程中空位的动态演变, 并在缺陷动力学、催化反应机理和催化活性之间建立联系, 这既关键又具有挑战性.

综上, 本文系统地总结了阴离子空位的构建、表征, 以及提升催化剂活性和稳定性的方法, 并提出了富阴离子空位型催化剂在OER过程中存在的挑战. 希望通过本综述能够推动相关研究人员进一步开发富阴离子空位型OER催化剂, 探索其机制并优化催化剂设计, 同时也能够为构建高效实用的富阴离子空位型OER电催化体系提供借鉴.

关键词: 阴离子空位, 析氧反应, 表征手段, 引入策略, 检测方法

Abstract:

Renewable energy conversion as well as water electrolysis technologies are constrained by the fact that kinetics are always slow in the electrocatalytic oxygen evolution reaction (OER). There are numerous means and strategies for the enhancement of OER activity. In this paper, we systematically review the important role of anionic vacancies in enhancing the OER activity of catalysts: increasing catalyst conductivity, improving electrical conductivity, and enhancing intermediate adsorption. In order to better detect the presence of vacancies in the samples, the principle of vacancy detection is reviewed in detail in terms of both spectroscopic and microscopic characterization, and the methods of vacancy formation as well as the factors influencing the concentration of vacancies are summarized in detail. In addition, the challenges and new directions for the study of anionic vacancies are provided.

Key words: Anionic vacancy, Oxygen evolution reaction, Characterization, Introduction strategy, Detection method