催化学报 ›› 2024, Vol. 66: 110-138.DOI: 10.1016/S1872-2067(24)60157-9
夏亚男a, 迟京起a,*(), 唐俊恒a, 刘晓斌a,c, 肖振宇a,b, 赖建平a,b, 王磊a,b,*(
)
收稿日期:
2024-07-15
接受日期:
2024-09-09
出版日期:
2024-11-18
发布日期:
2024-11-10
通讯作者:
*电子信箱: chijingqi@qust.edu.cn (迟京起),inorchemwl@qust.edu.cn (王磊).
基金资助:
Ya’nan Xiaa, Jingqi Chia,*(), Junheng Tanga, Xiaobin Liua,c, Zhenyu Xiaoa,b, Jianping Laia,b, Lei Wanga,b,*(
)
Received:
2024-07-15
Accepted:
2024-09-09
Online:
2024-11-18
Published:
2024-11-10
Contact:
*E-mail: About author:
Jingqi Chi received her B. S. degree and Ph.D. degree from the State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China). She is currently an associate professor at Qing dao University of Science and Technology. Her research interests focus on the design and synthesis of transition metal-based nanostructures and porous MOFs materials for electrochemical applications.Supported by:
摘要:
氢能被誉为“21世纪的终极能源”, 在灰氢、蓝氢、绿氢三条制氢路线中, 绿氢是唯一能够摆脱化石能源, 实现清洁零碳的制氢方式, 其中, 以可再生能源为动力的电解水制氢被视为实现绿色氢能生产的一种有效方法. 然而, 电解水技术受到阳极电催化析氧反应(OER)动力学活化能垒高和电子传输阻力大的限制. 近年来, 关于提升OER催化剂的策略不断出现, 包括元素掺杂、引入异质结构、应变工程和空位工程等, 其中空位工程中的阴离子空位工程被证明是一种提升OER活性的有效策略, 引起了广泛的关注.
本文系统总结了阴离子空位在OER电催化剂中的最新研究进展. 首先, 介绍了OER的发生机制. 总结了关于阴离子空位在OER机制过程中存在的活性与稳定性的平衡问题, 并概述了空位的引入方法, 在其基础上探讨了关于空位类型和空位浓度的调控策略. 通过重点介绍一些典型研究, 系统归纳了阴离子空位的表征方法(显微镜表征和光谱表征), 详细阐述了关于阴离子空位提升OER活性的作用机理, 主要包括提升电导率、调节电子结构和优化中间体吸附能. 此外, 还进一步探讨了关于提升富阴离子空位型OER催化剂稳定性的方式, 主要包括空位回填、空位再生和空位修饰. 其次, 按阴离子空位的类型进行了分类, 利用文献实例深入探讨了不同阴离子空位类型对OER电催化剂的影响机制. 最后, 提出了富阴离子空位型催化剂在OER过程中所面临的挑战, 例如催化反应是发生在催化剂表面的过程, 而空位在整个催化循环中也是动态变化的. 因此, 监测反应过程中空位的动态演变, 并在缺陷动力学、催化反应机理和催化活性之间建立联系, 这既关键又具有挑战性.
综上, 本文系统地总结了阴离子空位的构建、表征, 以及提升催化剂活性和稳定性的方法, 并提出了富阴离子空位型催化剂在OER过程中存在的挑战. 希望通过本综述能够推动相关研究人员进一步开发富阴离子空位型OER催化剂, 探索其机制并优化催化剂设计, 同时也能够为构建高效实用的富阴离子空位型OER电催化体系提供借鉴.
夏亚男, 迟京起, 唐俊恒, 刘晓斌, 肖振宇, 赖建平, 王磊. 阴离子空位在析氧反应电催化剂中的研究进展[J]. 催化学报, 2024, 66: 110-138.
Ya’nan Xia, Jingqi Chi, Junheng Tang, Xiaobin Liu, Zhenyu Xiao, Jianping Lai, Lei Wang. Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2024, 66: 110-138.
Fig. 2. Summary of methods for introducing anionic vacancies using different strategies [41??-44]. Reprinted with permission from Ref. [41]. Copyright 2023, Elsevier; Reprinted with permission from Ref. [43]. Copyright 2022, Elsevier; Reprinted with permission from Ref. [44]. Copyright 2018, American Chemical Society.
Fig. 3. (a) Mechanism diagram of phosphorus vacancy formation process. HRTEM images of Fe-Ni2P (b) and intensity maps of P vacancies in the corresponding regions (c) [48]. Reprinted with permission from Ref. [48]. Copyright 2023, John Wiley and Sons. In situ Raman images (d) and the EPR results (e) of the ZnOx. (f) H2O adsorption energy simulations of ZnOx with and without vacancies [49]. Reprinted with permission from Ref. [49]. Copyright 2024, Elsevier. (g) Comparison of EIS images of different samples. (h) Simulation of intermediate adsorption during OER of FeCo2Ni-Ov. (i) Reaction potentials and d-band center for different samples [52]. Reprinted with permission from Ref. [52]. Copyright 2021, Elsevier.
Fig. 4. Schematic synthesis (a) and HRTEM images (b) of Mo(SSe)2-x/G. (c) Gibbs free energy diagrams of H adsorption for different samples [55]. Reprinted with permission from Ref. [55]. Copyright 2023, Elsevier. (d) Schematic preparation of MoSe2-x/ZnSe@C with anionic vacancies and heterojunction. (e) Schematic diagram of the process of preparing vacancies by calcination. (f,g) HRTEM image of MoSe2-x/ZnSe@C, where red circles represent Se vacancies [56]. Reprinted with permission from Ref. [56]. Copyright 2023, John Wiley and Sons.
Fig. 5. (a) Simulation of electrochemical measurement process. (b) XRD plots of different voltage treated NiO. (c) CV polarization curves for different samples [60]. Reprinted with permission from Ref. [60]. Copyright 2020, Elsevier. Mechanistic diagram of the synthesis of HEOs by conventional methods (d) and low-temperature plasma methods (e). (f) Isothermal curves of N2 adsorption and desorption for different samples [61]. Reprinted with permission from Ref. [61]. Copyright 2021, John Wiley and Sons. Schematic distribution of BVO charge carriers (g) without and (h) with oxygen vacancies [62]. Reprinted with permission from Ref. [62]. Copyright 2024, Elsevier.
Fig. 6. (a) Diagram of the mechanism of oxygen vacancy formation in CeO2 [67]. Reprinted with permission from Ref. [67]. Copyright 2024, Elsevier. (b) Mechanistic diagram of oxygen vacancy formation in Co3O4 [70]. Reprinted with permission from Ref. [70]. Copyright 2016, John Wiley and Sons. (c) Single-vacancy OER mechanism diagram [71]. Reprinted with permission from Ref. [71]. Copyright 2024, John Wiley and Sons. (d,e) Multi-vacancies aggregation model diagram [72]. Reprinted with permission from Ref. [72]. Copyright 2023, AIP Publishing. (f) Synergistic model of anionic vacancies and cationic vacancies [73] Reprinted with permission from Ref. [73]. Copyright 2020, John Wiley and Sons.
Fig. 7. (a) EPR spectra of SrTiO3 at different temperatures [74]. Reprinted with permission from Ref. [74]. Copyright 2014, American Chemical Society. (b) EPR spectra of SrTiO3 at different temperatures [75]. Reprinted with permission from Ref. [75]. Copyright 2019, Elsevier. (c) STM image of the alignment status of a single S vacancy in MoS2 [76]. Reprinted with permission from Ref. [76]. Copyright 2020, American Chemical Society. (d) Comparison of the density of states of Mo atoms with different distributions of S vacancies in MoS2. STM image of the alignment status of a single S vacancy in MoS2 (e) and the image of the arrangement status of linear S vacancies in MoS2 (f) [77]. Reprinted with permission from Ref. [77]. Copyright 2017, John Wiley and Sons. (g) ESR plots for different concentrations of phosphorus doping. (h) LSV polarization curves for different PV concentrations [79]. Reprinted with permission from Ref. [79]. Copyright 2022, John Wiley and Sons. (i) CoP charge density difference cross section with and without vacancies [82]. Reprinted with permission from Ref. [82]. Copyright 2023, John Wiley and Sons.
Fig. 9. HRTEM image of F-FeCoPV@IF (a) and magnified image of the corresponding region (b) [89]. Reprinted with permission from Ref. [89]. Copyright 2023, Elsevier. (c) HAADF-STEM image in PtTe2 NSs (upper inset represents Te vacancies at certain line intensities, lower right inset represents Pt and Te atomic columns, lower left inset represents contrast visualization of vacancies in PtTe2 NSs). (d) STM diagram of Cu2O/Au (111). (e) AFM image of the presence of S vacancies in MoS2 sample, pink circle and blue circle representing the impassable current density [94]. Reprinted with permission from Ref. [94]. Copyright 2022, American Chemical Society. (f) ABF-STEM images of P-Pt/STO samples (Red dots indicate oxygen vacancies). (g) The enlarged area of the red dashed box in Figs. 9(f) and (h) the line profile along the dashed arrow in Fig. 9(g) [95]. Reprinted with permission from Ref. [95]. Copyright 2022, Elsevier.
Fig. 10. XPS spectra of N 1s (a) and O 1s (b) of Vo-Co(OH)2/CoN and comparison sample [100]. Reprinted with permission from Ref. [100]. Copyright 2023, Springer Nature. XANES spectral profile of the K-edge of Co (c) and Corresponding K3-weighted EXAFS fitting curves (d) [103]. Reprinted with permission from Ref. [103]. Copyright 2023, Elsevier. (e) EPR curves of O-MoS2 and comparison sample [106]. Reprinted with permission from Ref. [106]. Copyright 2020, Elsevier. (f) Raman spectra of L-Co3O4 and comparison sample [108]. Reprinted with permission from Ref. [108]. Copyright 2021, Elsevier. (g) In situ UV Raman spectra of Ce-LDH materials during calcination at different temperatures. (h) UV Raman spectra of different samples [109]. Reprinted with permission from Ref. [109]. Copyright 2022, Elsevier. (i) Positron annihilation spectra of N-(Zn,en)VO and comparison sample [112]. Reprinted with permission from Ref. [112]. Copyright 2022, John Wiley and Sons.
Sample | τ1 (ps) | τ2 (ps) | τ3 (ps) | I1 (%) | I2 (%) | I3 (%) |
---|---|---|---|---|---|---|
N-(Zn,en)VO | 199 | 374 | 2.332 | 25.0 | 73.1 | 1.9 |
(Zn,en)VO | 201 | 360 | 2.189 | 32.2 | 65.4 | 2.4 |
Table 1 Positron lifetimes and relative intensities of N-(Zn,en)VO and (Zn,en)VO [113] Reprinted with permission from Ref. [113]. Copyright 2024, Elsevier.
Sample | τ1 (ps) | τ2 (ps) | τ3 (ps) | I1 (%) | I2 (%) | I3 (%) |
---|---|---|---|---|---|---|
N-(Zn,en)VO | 199 | 374 | 2.332 | 25.0 | 73.1 | 1.9 |
(Zn,en)VO | 201 | 360 | 2.189 | 32.2 | 65.4 | 2.4 |
Fig. 11. Schematic representation of the role of anionic vacancies in OER [114]. Reprinted with permission from Ref. [114]. Copyright 2020, John Wiley and Sons.
Fig. 12. (a) TEM images of RuO2@Co3O4 samples. (b) Differential charge density images of RuO2@Co3O4 samples. (c) Density of d-orbital states for different samples [115]. Reprinted with permission from Ref. [115]. Copyright 2024, Elsevier. (d) LSV polarization curves for OER of different samples. (e) Gibbs free energy diagrams of the OER process for different sample models. (f) Projected density of d-orbital states for different samples [116]. Reprinted with permission from Ref. [116]. Copyright 2024, Elsevier. (g) Plots of the heterogeneous interface model and vacancy distribution for Co9Se8/FeNiSe. (h) LSV curve of Co9Se8/FeNiSe [117]. Reprinted with permission from Ref. [117]. Copyright 2024, Elsevier.
Fig. 13. (a) LSV polarization curves of NiFe LDHs samples with oxygen vacancies. (b) Conductivity versus potential curves for different samples [118]. Reprinted with permission from Ref. [118]. Copyright 2023, American Chemical Society. (c) Nyquist plots for different samples. (d) Ea values for different samples [119]. Reprinted with permission from Ref. [119]. Copyright 2022, John Wiley and Sons. (e) LSV polarization curves of different samples. (f) Differential charge density images of NiFe2O4-Vo-P samples. (g) OER Gibbs free energy of different samples at different potentials [120]. Reprinted with permission from Ref. [120]. Copyright 2023, Elsevier.
Fig. 14. (a) Tafel slopes for different samples. (b) Geometrical configuration of different samples. (c) Free energy diagrams of the HER process for different samples [121]. Reprinted with permission from Ref. [121]. Copyright 2021, Elsevier. (d) OER LSV polarization curves for different samples. (e) XPS plots of O 1s from different samples [122]. Reprinted with permission from Ref. [122]. Copyright 2022, American Chemical Society. (f) DOS plots of different samples [123]. Reprinted with permission from Ref. [123]. Copyright 2022, John Wiley and Sons. (g) Relationship between Sr and O vacancies in the OER process. (h) Difference in adsorption energy of OH* intermediates between samples [124]. Reprinted with permission from Ref. [124]. Copyright 2023, Elsevier.
Fig. 15. Three mechanisms of OER two-dimensional activity diagram AEM (a), LOM-OVSM (b) and LOM-SMSM (c). (d) Comparison of theoretical and actual overpotential [125]. (e) OER mechanism diagram for Ni0.3Fe0.7-LDH@NF (LOM). (f) Schematic diagram of OER relative performance of different catalysts. (g) OER free energy barrier diagram of different surfaces of NiFe-LDH by LOM [126]. Reprinted with permission from Ref. [126]. Copyright 2023, Elsevier.
Fig. 16. (a) Water molecular adsorption and charge density of NiCo2O4 sample with oxygen vacancy. (b) LSV polarization curve of different NiCo2O4 nanosheets. (c) XRD of NiCo2O4 nanosheets with oxygen vacancies and bulk NiCo2O4 [138]. (d) O 1s XPS spectra of pristine and reduced Co3O4 nanosheets (e) Polarization curves of as-prepared O-vacancy-rich Co3O4 (O-Co3O4) with other catalysts. (f) The calculated OER free energy of the Co3O4 structure with/without oxygen vacancy [145]. Reprinted with permission from Ref. [145]. Copyright 2017, John Wiley and Sons. (g) Comparison of OER LSV curves of Co0.025-NiFe-LDH/NF and NiFe-LDH/NF. (h) O 1s XPS spectra of Co0.025-NiFe-LDH/NF and NiFe-LDH. (i) Partial density of states of Co0.025-NiFe-LDH (left) and NiFe-LDH (right) [135]. Reprinted with permission from Ref. [135]. Copyright 2021, Elsevier.
Fig. 17. (a) Fourier transform filtered atomic resolution images of different diffraction points. (b) Represents the different atomic intensity distribution images in (a). (c) Polarization curves for different samples. (d) Raman spectra of different samples. (e) Gibbs free energy for the Co9S8-ZnS model at U = 0 [146]. Reprinted with permission from Ref. [146]. Copyright 2022, American Chemical Society. (f) EPR images of different samples. (g) Polarization curves for different samples. (h) Adsorption model of Vs-(Fe, Ni)3S4. (i) Gibbs free energy of different samples during OER at Fe and Ni sites [147]. Reprinted with permission from Ref. [147]. Copyright 2024, Elsevier.
Fig. 18. (a) HRTEM images of CoXPV@NC samples. (b) Mechanism diagram of P vacancy formation in CoXPV@NC samples. (c) In-situ Raman spectra of CoXPV@NC samples [148]. Reprinted with permission from Ref. [148]. Copyright 2020, Elsevier. (d) EPR images of samples at different reduction times. (e) Comparison of LSV curves of different samples. (f) XPS curve of O 1s of samples after OER [152]. Reprinted with permission from Ref. [152]. Copyright 2021, Elsevier. (g) OER polarization curves for LSV. (h) Application resistance diagrams for different samples. (i) Comparative OER kinetic studies of different samples [155]. Reprinted with permission from Ref. [155]. Copyright 2023, John Wiley and Sons.
Fig. 19. (a) Comparison of polarization curves standardized by ECSA. (b) Comparison of total DOS for different samples. (c) OER Gibbs free energy of FeOOH and Se2(2C)-FeOOH [82]. Reprinted with permission from Ref. [82]. Copyright 2023, John Wiley and Sons. (d) R-space Ag K-edge EXAFS spectra of AgSA-NiSe2. (e) In situ Raman spectroscopy of AgSA-NiSe2 samples. (f) Free energy diagrams of NiSe2 and AgSA-NiSe2 OER processes [166]. Reprinted with permission from Ref. [166]. Copyright 2024, Elsevier. (g) Local HRTEM of Mo-Co9Se8@NiSe/NF-60 sample. (h) Comparison of EPR images of different samples. (i) Comparison of LSV polarization curves of different samples. (j) Comparison of d-band centers for different samples [168]. Reprinted with permission from Ref. [168]. Copyright 2023, Royal Society of Chemistry.
Fig. 20. (a) Comparison of EPR of different samples. (b) HRTEM images of o-CoTe2?P@HPC/CNTs samples. (c) Comparison of LSV of OER for different samples [170]. Reprinted with permission from Ref. [170]. Copyright 2020, American Chemical Society. (d) Top and side views of the G/BNNs sample and the corresponding charge density distribution. (e) Energy band structure of G/BNNs. (f) Comparison of LSV of OER for different samples [171]. Reprinted with permission from Ref. [171]. Copyright 2023, John Wiley and Sons.
Catalysts | Vacancy | Performance | Ref. |
---|---|---|---|
Ru/d-NiFe LDH | OV | 220 mV/10 mA cm-2 | [ |
Co3O4 | OV | 320 mV/10 mA cm-2 | [ |
300-h/Co/CC | OV | 280 mV/10 mA cm-2 | [ |
Ni0.3Fe0.7-LDH@NF | OV | 184 mV/10 mA cm-2 | [ |
S-CeO2 | OV | 190 mV/10 mA cm-2 | [ |
N-ZnCo2O4-δ-350 | OV | 406 mV/10 mA cm-2 | [ |
v-NiFe LDH | OV | 210 mV/10 mA cm-2 | [ |
NiCoPi | OV | 254 mV/10 mA cm-2 | [ |
Co(OH)2/WOx | OV | 208 mV/10 mA cm-2 | [ |
Ni-S-5 | OV | 142 mV/10 mA cm-2 | [ |
CoMoO4-Ov | OV | 296 mV/10 mA cm-2 | [ |
HEOs-Ov | OV | 284 mV/10 mA cm-2 | [ |
Sr2Co2O5 | OV | 370 mV/10 mA cm-2 | [ |
2D d-MHOFs | OV | 207 mV/10 mA cm-2 | [ |
VO-Cubic-Co3O4 | OV | 375 mV/10 mA cm-2 | [ |
β-FeOOH | OV | 232 mV/10 mA cm-2 | [ |
Fe1Co1Ox | OV | 225 mV/10 mA cm-2 | [ |
Co3O4 | OV | 367 mV/10 mA cm-2 | [ |
MNC | OV | 250 mV/10 mA cm-2 | [ |
Fe2O3@CeO2-OV | OV | 172 mV/10 mA cm-2 | [ |
Fe-Ni2P(PV) | PV | 290 mV/10 mA cm-2 | [ |
V-doped NiCoP | PV | 246 mV/10 mA cm-2 | [ |
D-Ni5P4|Fe | PV | 217 mV/10 mA cm-2 | [ |
CoP-B1 | PV | 297 mV/10 mA cm-2 | [ |
Fe-Ni2P | PV | 190 mV/10 mA cm-2 | [ |
Ni2P/Cu3P | PV | 370 mV/10 mA cm-2 | [ |
VP-Co-MoP@MXene | PV | 265 mV/10 mA cm-2 | [ |
Fe-Ni2P-VP | PV | 289 mV/10 mA cm-2 | [ |
NiFe(OH)x/NiPx/NF | PV | 220 mV/10 mA cm-2 | [ |
Co0.68Fe0.32P-60 | PV | 259 mV/10 mA cm-2 | [ |
P-NiS2-500 | SV | 340 mV/10 mA cm-2 | [ |
P-CoS | SV | 280 mV/10 mA cm-2 | [ |
SV-Ni3S2-xPx-4 | SV | 216 mV/10 mA cm-2 | [ |
Bi2S3 | SV | 374 mV/10 mA cm-2 | [ |
H-VS-Co3S4 | SV | 270 mV/10 mA cm-2 | [ |
Ru-FeNi2S4 | SV | 253 mV/10 mA cm-2 | [ |
VS-Ni3S2/MoS2 | SV | 180 mV/10 mA cm-2 | [ |
Co9S8-ZnS/NTC | SV | 290 mV/10 mA cm-2 | [ |
d-PtSe2 | SeV | 310 mV/10 mA cm-2 | [ |
Co0.85Se1-x@C | SeV | 231 mV/10 mA cm-2 | [ |
A-NiSe2|P | SeV | 272 mV/10 mA cm-2 | [ |
CoSe2 | SeV | 284 mV/10 mA cm-2 | [ |
o-CoTe2|P@HPC/CNTs | TeV | 241 mV/10 mA cm-2 | [ |
Table 2 Summary of OER catalysts optimized for different anionic vacancies.
Catalysts | Vacancy | Performance | Ref. |
---|---|---|---|
Ru/d-NiFe LDH | OV | 220 mV/10 mA cm-2 | [ |
Co3O4 | OV | 320 mV/10 mA cm-2 | [ |
300-h/Co/CC | OV | 280 mV/10 mA cm-2 | [ |
Ni0.3Fe0.7-LDH@NF | OV | 184 mV/10 mA cm-2 | [ |
S-CeO2 | OV | 190 mV/10 mA cm-2 | [ |
N-ZnCo2O4-δ-350 | OV | 406 mV/10 mA cm-2 | [ |
v-NiFe LDH | OV | 210 mV/10 mA cm-2 | [ |
NiCoPi | OV | 254 mV/10 mA cm-2 | [ |
Co(OH)2/WOx | OV | 208 mV/10 mA cm-2 | [ |
Ni-S-5 | OV | 142 mV/10 mA cm-2 | [ |
CoMoO4-Ov | OV | 296 mV/10 mA cm-2 | [ |
HEOs-Ov | OV | 284 mV/10 mA cm-2 | [ |
Sr2Co2O5 | OV | 370 mV/10 mA cm-2 | [ |
2D d-MHOFs | OV | 207 mV/10 mA cm-2 | [ |
VO-Cubic-Co3O4 | OV | 375 mV/10 mA cm-2 | [ |
β-FeOOH | OV | 232 mV/10 mA cm-2 | [ |
Fe1Co1Ox | OV | 225 mV/10 mA cm-2 | [ |
Co3O4 | OV | 367 mV/10 mA cm-2 | [ |
MNC | OV | 250 mV/10 mA cm-2 | [ |
Fe2O3@CeO2-OV | OV | 172 mV/10 mA cm-2 | [ |
Fe-Ni2P(PV) | PV | 290 mV/10 mA cm-2 | [ |
V-doped NiCoP | PV | 246 mV/10 mA cm-2 | [ |
D-Ni5P4|Fe | PV | 217 mV/10 mA cm-2 | [ |
CoP-B1 | PV | 297 mV/10 mA cm-2 | [ |
Fe-Ni2P | PV | 190 mV/10 mA cm-2 | [ |
Ni2P/Cu3P | PV | 370 mV/10 mA cm-2 | [ |
VP-Co-MoP@MXene | PV | 265 mV/10 mA cm-2 | [ |
Fe-Ni2P-VP | PV | 289 mV/10 mA cm-2 | [ |
NiFe(OH)x/NiPx/NF | PV | 220 mV/10 mA cm-2 | [ |
Co0.68Fe0.32P-60 | PV | 259 mV/10 mA cm-2 | [ |
P-NiS2-500 | SV | 340 mV/10 mA cm-2 | [ |
P-CoS | SV | 280 mV/10 mA cm-2 | [ |
SV-Ni3S2-xPx-4 | SV | 216 mV/10 mA cm-2 | [ |
Bi2S3 | SV | 374 mV/10 mA cm-2 | [ |
H-VS-Co3S4 | SV | 270 mV/10 mA cm-2 | [ |
Ru-FeNi2S4 | SV | 253 mV/10 mA cm-2 | [ |
VS-Ni3S2/MoS2 | SV | 180 mV/10 mA cm-2 | [ |
Co9S8-ZnS/NTC | SV | 290 mV/10 mA cm-2 | [ |
d-PtSe2 | SeV | 310 mV/10 mA cm-2 | [ |
Co0.85Se1-x@C | SeV | 231 mV/10 mA cm-2 | [ |
A-NiSe2|P | SeV | 272 mV/10 mA cm-2 | [ |
CoSe2 | SeV | 284 mV/10 mA cm-2 | [ |
o-CoTe2|P@HPC/CNTs | TeV | 241 mV/10 mA cm-2 | [ |
Fig. 21. Prospective images of anionic vacancies on OER catalysts [211?-213]. Reprinted with permission from Ref. [212]. Copyright 2023, John Wiley and Sons. Reprinted with permission from Ref. [213]. Copyright 2024, American Chemical Society.
|
[1] | 谢旻斐, 姬星, 孟华颖, 姜南冰, 罗贞玉, 黄千千, 孙耿, 张云怀, 肖鹏. 赤铁矿光阳极界面钛原子在析氧反应多位点机制中的作用: 反应活性位点还是助催化位点?[J]. 催化学报, 2024, 64(9): 77-86. |
[2] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[3] | 吕青芸, 张伟伟, 龙志鹏, 王建涛, 邹星礼, 任伟, 侯龙, 鲁雄刚, 赵玉峰, 余兴, 李喜. Fe稳固的FeOOH@NiOOH电催化剂的大电流极化设计与析氧研究[J]. 催化学报, 2024, 62(7): 254-264. |
[4] | 郭静雅, 刘炜, 商文喆, 司端惠, 朱超, 胡金文, 辛存存, 程旭升, 张松林, 宋俗禅, 王秀云, 史彦涛. 完全暴露的碳基电极边缘-平面位点用于高效水氧化[J]. 催化学报, 2024, 60(5): 272-283. |
[5] | Adel Al-Salihy, 梁策, Abdulwahab Salah, Abdel-Basit Al-Odayni, 卢子昂, 陈孟新, 刘倩倩, 徐平. 用于提升全水解性能的超低含量Ru掺杂NiMoO4@Ni3(PO4)2核壳纳米结构[J]. 催化学报, 2024, 60(5): 360-375. |
[6] | 罗健颖, 傅捷, 叶丰铭, 梁汉锋, 王伟俊. 释放多孔纳米结构的活力: 可持续电催化水分解[J]. 催化学报, 2024, 58(3): 37-85. |
[7] | 郭英杰, 李世龙, 王竞洋, 石磊, 刘迪, 赵慎龙. 非衍生金属有机框架纳米片电解水催化剂: 基础理论、调控策略和最新进展[J]. 催化学报, 2024, 67(12): 21-53. |
[8] | 陈思雨, 管景奇. 氮还原电催化剂的结构调控策略[J]. 催化学报, 2024, 66(11): 20-52. |
[9] | 宋龙, 迟京起, 唐俊恒, 刘晓斌, 肖振宇, 吴则星, 王磊. 高效海水电解和抑制氯化物氧化的阳极设计原则[J]. 催化学报, 2024, 66(11): 53-75. |
[10] | 施兆平, 王子昂, 吴鸿翔, 肖梅玲, 刘长鹏, 邢巍. 快速配体转换制备高密度Ir单原子用于高效催化酸性水氧化[J]. 催化学报, 2024, 66(11): 223-232. |
[11] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[12] | 韩璟怡, 管景奇. 通过表面镧改性和体相锰掺杂协助钴尖晶石酸性下析氧[J]. 催化学报, 2023, 51(8): 1-4. |
[13] | 张光颖, 刘旭, 张欣欣, 梁志坚, 邢耕宇, 蔡斌, 沈迪, 王蕾, 付宏刚. P修饰提高Fe-N-C的氧反应活性用于高稳定的锌-空气电池[J]. 催化学报, 2023, 49(6): 141-151. |
[14] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[15] | 张志普, 卢珊珊, 张兵, 史艳梅. 揭示硫掺杂的碳材料在水电氧化过程中活性苯醌基团及惰性硫残留物的形成[J]. 催化学报, 2023, 47(4): 129-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||