催化学报 ›› 2025, Vol. 69: 111-122.DOI: 10.1016/S1872-2067(24)60191-9

• 论文 • 上一篇    下一篇

负载埃洛石纳米管和NiS助催化剂促进CdS光催化产H2O2性能

李红芬a, 张以河a,*(), 李建明b,*(), 刘青c,d, 张晓俊a, 张有鹏a, 黄洪伟a,*()   

  1. a中国地质大学(北京)材料科学与工程学院, 地质储碳和资源低碳利用教育部工程研究中心, 非金属矿物与固废资源材料化利用北京市重点实验室, 矿物材料实验室, 北京 100083
    b宁波工程学院能源学院, 浙江宁波 315211
    c生态环境及其信息图谱福建省高校重点实验室, 福建莆田 351100
    d莆田学院环境与生物工程学院, 福建省新型污染物生态毒理效应与控制重点实验室, 福建莆田 351100
  • 收稿日期:2024-08-21 接受日期:2024-10-24 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: zyh@cugb.edu.cn (张以河), jmli@nbut.edu.cn (李建明), hhw@cugb.edu.cn (黄洪伟).
  • 基金资助:
    国家自然基金(52072347);国家自然基金(52272244);国家自然基金(51972288);中央高校基本科研业务费(2652022202);福建省自然科学基金(2020J05210);生态环境及其信息图谱福建省高校重点实验室开放基金(ST22003);江苏省环保功能吸附材料制备国地联合工程实验室开放研究课题(SDGC2302)

Boosting H2O2 evolution of CdS via constructing a ternary photocatalyst with earth-abundant halloysite nanotubes and NiS co-catalyst

Hongfen Lia, Yihe Zhanga,*(), Jianming Lib,*(), Qing Liuc,d, Xiaojun Zhanga, Youpeng Zhanga, Hongwei Huanga,*()   

  1. aEngineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    bCollege of New Energy, Ningbo University of Technology, Ningbo 315211, Zhejiang, China
    cKey Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, Putian 351100, Fujian, China
    dFujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, China
  • Received:2024-08-21 Accepted:2024-10-24 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: zyh@cugb.edu.cn (Y. Zhang), jmli@nbut.edu.cn (J. Li), hhw@cugb.edu.cn (H. Huang).
  • Supported by:
    National Natural Science Foundation of China(52072347);National Natural Science Foundation of China(52272244);National Natural Science Foundation of China(51972288);Fundamental Research Funds for the Central Universities(2652022202);Natural Science and Technology Foundation of Fujian Province(2020J05210);Open Funding of Key Laboratory of Ecological Environment and Information Atlas(ST22003);project of national local joint engineering laboratory to functional adsorption material technology for the environmental protection, Jiangsu(SDGC2302)

摘要:

采用光催化技术生产过氧化氢(H2O2)是一种节能、环保且前景广阔的方法, 有望替代传统的蒽醌技术. 本文以天然粘土矿物埃洛石纳米管(HNTs)为载体, NiS为助催化剂, 设计并制备了一种三元光催化剂NiS/CdS/HNTs. 通过实验和理论计算, 阐明了HNTs和NiS在光催化过程中的关键作用. HNTs作为载体, 使CdS以小颗粒的形式均匀地分散在其表面, 增加了催化剂与H2O和O2的有效接触, 促进了H2O2的生成. 同时, NiS和CdS之间形成了肖特基结, 不但有利于光生电荷的有效分离, 还提供了一条单向的电子转移路径. 优化后的NiS/CdS/HNTs复合材料在不添加任何牺牲剂或额外氧气的情况下, H2O2的生产速率达到了380.5 μmol·g‒1·h‒1, 是纯CdS的5.0倍. 本文为设计和开发高活性、低成本的复合光催化材料提供了可行的思路.

CdS是一种重要的能够通过光催化过程生产H2O2的半导体材料. 然而, 未经改性的CdS通常存在严重的团聚、光腐蚀和载流子重组等问题, 因此光催化性能较差. 为了解决CdS光催化剂存在的容易团聚、载流子分离效低的问题, 本文同时引入HNTs和NiS分别作为CdS纳米材料的载体和助催化剂, 在提高CdS纳米粒子颗粒分散性的同时提高其载流子分离效率, 从而促进了CdS纳米材料的光催化产H2O2效率. 具体而言, 先采用油浴法合成了二元催化剂CdS/HNTs. 通过调控HNTs和CdS的比例, 获得性能最优的样品即质量比为1:1的CdS/HNTs复合光催化剂, 其性能约是纯CdS的2.3倍. 扫描电镜和透射电镜结果表明, CdS以小颗粒的形式均匀分散在HNTs的表面, 说明HNTs能有效抑制CdS纳米粒子的团聚, 改善其分散性. 由于分散性的改善, CdS与H2O和O2的有效接触面积增大, 因此光催化活性提高. 然后, 再采用溶剂热法, 在CdS/HNTs的表面原位生长NiS助催化剂, 构建NiS/CdS/HNTs三元复合光催化材料. 能量色散X射线能谱测试结果表明, NiS以更小颗粒的形式生长于CdS的表面. 可见光下的H2O2性能测试实验结果表明, NiS负载量为5%时, 三元复合材料的光催化活性最高, H2O2的产率约为761.2 μmol·g‒1. 若在反应体系中添加少量的乙醇作为牺牲剂, 则H2O2的产率会进一步提高, 约为1554.1 μmol·g‒1. 通过密度泛函理论计算发现, NiS和CdS之间会形成肖特基结, 使电子从CdS流向NiS, 实现电子和空穴在空间上的分离, 促进电荷转移, 从而使光催化活性增强. 捕获实验和旋转环盘电极上的电化学测试结果则表明, NiS/CdS/HNTs三元复合光催化材料主要是通过2电子的氧还原路径实现H2O2的演化的.

综上, 本文通过引入HNTs矿物载体和NiS助催化剂对CdS的光催化活性进行调节, 有利于CdS光催化性能的大幅度提升. 其主要原因是HNTs改善了CdS纳米颗粒的分散性, 而NiS助催化剂则加速了电荷转移, 促进了载流子的空间分离. 在降低生产成本的同时, 实现了CdS光催化活性的提升. 这种协同作用机制也为设计和制备高性能、低成本的多元光催化剂提供了参考.

关键词: 光催化产H2O2, 三元光催化剂, NiS/CdS/HNTs, 载流子分离, 肖特基结

Abstract:

Hydrogen peroxide (H2O2), an environmentally friendly chemical with high value, is extensively used in industrial production and daily life. However, the traditional anthraquinone method for H2O2 production is associated with a highly energy-consuming and heavily polluting process. Solor-driven photocatalytic evolution of H2O2 is a promising, eco-friendly, and energy-efficient strategy that holds great potential to substitute the traditional approach. Here, a ternary photocatalyst, NiS/CdS/Halloysite nanotubes (NiS/CdS/HNTs) is designed and prepared with an earth-abundant clay mineral HNTs as the support and NiS as a co-catalyst. The pivotal roles of HNTs and NiS in the photocatalytic process are elucidated by experiments and theoretical calculations. HNTs serve as the carrier, which allows CdS to be uniformly dispersed onto its surface as small particles, increasing effective contact with H2O and O2 for H2O2 formation. Simultaneously, it resulted in the formation of a Schottky junction between NiS and CdS, which not only favors photogenerated charges separating efficiently but also provides a unidirectional path to transfer electrons. Consequently, the optimized NiS/CdS/HNTs composite demonstrates an H2O2 evolution rate of 380.5 μmol·g-1·h-1 without adding any sacrificial agent or extra O2, nearly 5.0 times that of pure CdS. This work suggests a feasible idea for designing and developing highly active and low-cost solar energy catalytic composite materials.

Key words: Photocatalytic H2O2 evolution, Ternary photocatalyst, NiS/CdS/HNTs, Carrier separation, Schottky junction