催化学报 ›› 2025, Vol. 70: 399-409.DOI: 10.1016/S1872-2067(24)60249-4

• 论文 • 上一篇    下一篇

碳扩散机制作为有效的稳定性增强策略——以镍基催化剂用于光热催化甲烷干重整为例的研究

李德正a,1, 刘会敏a,*,1(), 肖雪文b,1, 赵曼淇a, 贺德华c,*(), 雷一鸣d,*()   

  1. a辽宁工业大学化学与环境工程学院, 辽宁锦州 121000, 中国
    b奥赛分子科学研究所(ISMO), 巴黎萨克雷大学和国家科学研究中心(CNRS), 奥赛 91400, 法国
    c清华大学化学系, 有机光电子与分子工程教育部重点实验室, 北京 100084, 中国
    d巴塞罗那自治大学理学院化学系(无机化学), 萨丹约拉, 巴塞罗那 08193, 西班牙
  • 收稿日期:2024-11-04 接受日期:2025-01-19 出版日期:2025-03-18 发布日期:2025-03-20
  • 通讯作者: * 电子信箱: liuhuimin08@tsinghua.org.cn (刘会敏),hedeh@mail.tsinghua.edu.cn (贺德华),yiming.lei@uab.cat (雷一鸣).
  • 作者简介:1共同第二作者.
  • 基金资助:
    国家自然科学基金(21902116);辽宁省青年人才计划(XLYC2203068);辽宁省科技厅科研基金(2022-MS-379);辽宁省教育厅2024年度基本科研业务费专项资金、国家留学基金(202206250016);辽宁省教育厅2024年度基本科研业务费专项资金、国家留学基金(202206020087)

Carbon diffusion mechanism as an effective stability enhancement strategy: The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane

Dezheng Lia,1, Huimin Liua,*,1(), Xuewen Xiaob,1, Manqi Zhaoa, Dehua Hec,*(), Yiming Leid,*()   

  1. aSchool of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121000, Liaoning, China
    bInstitute of Molecular Sciences of Orsay (ISMO), University Paris-Saclay and National Centre for Scientific Research (CNRS), Orsay, 91400, France
    cKey Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
    dDepartment of Chemistry (Inorganic Chemistry), Faculty of Sciences, Autonomous University of Barcelona (UAB), Cerdanyola del Valles, Barcelona 08193, Spain
  • Received:2024-11-04 Accepted:2025-01-19 Online:2025-03-18 Published:2025-03-20
  • Contact: * E-mail: liuhuimin08@tsinghua.org.cn (H. Liu),hedeh@mail.tsinghua.edu.cn (D. He),yiming.lei@uab.cat (Y. Lei).
  • About author:1 Contributed to this work equally.
  • Supported by:
    National Natural Science Foundation of China(21902116);Young Talent Plan of Liaoning Province(XLYC2203068);Scientific Research Foundation of Technology Department of Liaoning Province of China(2022-MS-379);2024 Fundamental Research Funding of the Educational Department of Liaoning Province, and the China Scholarship Council is gratefully acknowledged by Y. Lei(202206250016);2024 Fundamental Research Funding of the Educational Department of Liaoning Province, and the China Scholarship Council is gratefully acknowledged by X. Xiao(202206020087)

摘要:

光热催化甲烷干重整(DRM)技术能够在温和条件下将温室气体(CH4和CO2)转化为合成气(H2和CO), 为下游化工提供原料, 对减少温室效应、实现碳中和具有重要意义. 镍(Ni)基催化剂因成本低、催化活性高而备受关注, 在DRM领域得到了广泛研究和应用. 然而, CH4易在Ni基催化剂表面过度裂解生成沉积碳, 导致催化剂迅速失活, 严重阻碍了其在光热DRM领域的工业化应用, 成为当前亟待解决的关键挑战.

为了提升Ni基催化剂的长期稳定性, 本文提出了一种碳原子扩散策略, 并以锌掺杂镍基催化剂(Ni3Zn@CeO2)为例, 探究了该策略对Ni基催化剂活性及稳定性的影响. Ni3Zn合金相的设计考虑到引入外部金属原子可以有效地调节Ni晶格参数, 从而在间隙位点实现碳原子的扩散. 通过共沉淀法以及在H2/N2气氛下的热还原过程制备了CeO2负载合金化Ni3Zn. X射线衍射(XRD)、透射电子显微镜和高角环形暗场扫描透射电镜表征证实了合金相Ni3Zn成功地锚定在CeO2表面. 为了验证这一策略的有效性并探究其机理, 将Ni3Zn@CeO2光热催化剂用于长时间DRM反应. 结果表明, 在光热催化DRM反应中(0.1 g催化剂、500 °C、300瓦氙灯照射), Ni3Zn@CeO2具有超过70 h的稳定性, 其光热催化DRM活性是热催化活性的1.2倍. 光热条件下, 初始CH4和CO2转化率分别为536.5和543.4 μmol∙g−1∙min−1, H2和CO的释放速率分别为349和497 μmol∙g−1∙min−1. 机理研究表明, DRM反应效率的提高应归因于光热效应、CO2强吸附能力和Ni3Zn@CeO2强还原能力之间的协同作用. XRD和密度泛函理论(DFT)计算结果证实, 稳定性增强应归因于Ni3Zn空间半径的增加, 这有利于碳原子扩散到Ni3Zn八面体中心, 原位形成具有体心立方(bcc)结构的Ni3ZnC0.7相, 抑制碳沉积现象, 成功提高了Ni基催化剂的稳定性. 此外, 原位漫反射红外傅里叶变换光谱和DFT计算表明, Ni3Zn@CeO2有利于CH4的活化, 提高了光热催化DRM的反应效率. 碳原子扩散机制可以抑制CH4过度裂解, 避免催化剂表面的碳沉积问题. 配位的碳原子可以与b-CO2*中间体相互作用, 实现完整的碳原子扩散-反应循环.

综上所述, 本文通过诱导碳原子在Ni3Zn晶格内扩散的策略开发了一种具有较好稳定性的光热催化DRM Ni基催化剂. 作为Ni基催化剂的稳定性增强机制, 这种碳原子扩散策略有望扩展到其他光热平台和反应中.

关键词: 光热催化, 甲烷干重整, 镍基催化剂, 稳定性增强, 碳原子扩散

Abstract:

Photothermal catalytic methane dry reforming (DRM) technology can convert greenhouse gases (i.e. CH4 and CO2) into syngas (i.e. H2 and CO), providing more opportunities for reducing the greenhouse effect and achieving carbon neutrality. In the DRM field, Ni-based catalysts attract wide attention due to their low cost and high activity. However, the carbon deposition over Ni-based catalysts always leads to rapid deactivation, which is still a main challenge. To improve the long-term stability of Ni-based catalysts, this work proposes a carbon-atom-diffusion strategy under photothermal conditions and investigates its effect on a Zn-doped Ni-based photothermal catalyst (Ni3Zn@CeO2). The photothermal catalytic behavior of Ni3Zn@CeO2 can maintain more than 70 h in DRM reaction. And the photocatalytic DRM activity of Ni3Zn@CeO2 is 1.2 times higher than thermal catalytic activity. Density functional theory (DFT) calculation and experimental characterizations indicate that Ni3Zn promotes the diffusion of carbon atoms into the Ni3Zn to form the Ni3ZnC0.7 phase with body-centered cubic (bcc) structure, thus inhibiting carbon deposition. Further, in-situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and DFT calculation prove Ni3Zn@CeO2 benefits the CH4 activation and inhibits the carbon deposition during the DRM process. Through inducing carbon atoms diffusion within the Ni3Zn lattice, this work provides a straightforward and feasible strategy for achieving efficient photothermal catalytic DRM and even other CH4 conversion implementations with long-term stability.

Key words: Photothermal catalysis, Methane dry reforming, Ni-based catalyst, Stability enhancement, Carbon atom diffusion