催化学报 ›› 2023, Vol. 53: 72-101.DOI: 10.1016/S1872-2067(23)64520-6
雷一鸣a,b, 叶金花c, Jordi García-Antónb,*(), 刘慧敏a,*(
)
收稿日期:
2023-07-03
接受日期:
2023-09-08
出版日期:
2023-10-18
发布日期:
2023-10-25
通讯作者:
*电子信箱: liuhuimin08@tsinghua.org.cn (刘慧敏),
Jordi.GarciaAnton@uab.es (Jordi García-Antón).
基金资助:
Yiming Leia,b, Jinhua Yec, Jordi García-Antónb,*(), Huimin Liua,*(
)
Received:
2023-07-03
Accepted:
2023-09-08
Online:
2023-10-18
Published:
2023-10-25
Contact:
E-mail: About author:
Jordi García-Antón received his Ph.D. in Chemistry in 2003 from the Universitat Autònoma de Barcelona (UAB). Then, he pursued a postdoctoral stay at the Laboratoire de Chimie de Coordination (Dr. Chaudret group; Toulouse, France), where his work dealt with the synthesis and characterization of metallic nanoparticles and the study of their surface coordination chemistry. In 2006, Dr. García‐Antón joined the UAB as a lecturer in chemistry, and in 2014 he became an associate professor. His research interest focuses on the preparation of metallic or metal‐oxide nanoparticles through the organometallic approach and their use as (photo)catalysts in artificial photosynthesis processes.Supported by:
摘要:
甲烷(CH4)和二氧化碳(CO2)是导致全球变暖的两种主要温室气体. 甲烷干重整技术能够同时消耗两种温室气体并制备氢气(H2)和一氧化碳(CO), 是减少温室效应的理想策略之一. CH4和CO2在热力学上具有很高的稳定性, 所以活化CH4和CO2需要克服较高的能垒, 导致传统的甲烷干重整技术总是需要高热能来触发该反应发生. 光催化技术的发展为在温和条件下启动甲烷干重整反应提供了更多的可能. 然而, 由于光激发载流子之间的快速重组, 光催化效率仍然较低, 难以满足工业需求. 研究人员发现, 通过构建内置电场增强电荷载流子的分离和转移动力学是解决上述问题的可靠策略.
本文首先介绍了甲烷干重整的反应机理和用于甲烷干重整的工业热催化材料. 随后, 总结了光催化甲烷干重整的优点和潜在的光催化材料, 重点介绍了两类催化剂: (1) 由铁电效应产生的永久自发极化进而构筑的内建电场的光催化剂. 由于自发极化引起的电场, 基于铁电材料的光催化剂在促进电荷转移方面显示出较大潜力. (2) 由异质结结构在界面处引发内建电场的光催化剂. 基于两种具有合适能带结构的半导体构建Ⅱ型异质结也是一种有效方法, 由于交错间隙结构, 在界面处形成内置电场, 导致不同半导体分别进行氧化和还原过程. 此外, Z型载流子转移机制可以保留具有更强还原能力的电子和更强氧化能力的空穴, 将较低氧化还原能力的光生载流子重组, 从而通过界面电场促进光催化甲烷干重整过程. (3)局域表面等离激元共振(LSPR)效应引发内建热电场的光催化剂. 金属纳米颗粒在可见-近红外(Vis-NIR)光的照射下会产生共振现象, 将会导致金属中的电子结构不连续, 从而构建局部电场. 因此, LSPR效应在提高光(热)催化甲烷干重整效率方面具有巨大潜力. 随着光催化甲烷干重整技术的发展, 人们对理解反应机理或阐明光催化剂中特定组分在反应中的作用提出了更多要求, 导致原位表征技术和理论计算受到了极大的关注. 最后, 介绍了先进的原位表征和理论计算在该领域应用的主要进展, 并预测了原位表征在光催化甲烷干重整领域的潜在功能, 为从事该领域且处于起步阶段的年轻研究者提供了一定参考.
虽然在光催化甲烷干重整领域已经取得了许多突破和进展, 但仍存在一些挑战需要克服. 根据已有的研究结果, 本文总结了内建电场辅助光催化甲烷干重整领域的主要面临挑战, 并提出了应对这些挑战的可行性策略, 为未来对该领域进行更深入的研究提供借鉴.
雷一鸣, 叶金花, Jordi García-Antón, 刘慧敏. 内建电场辅助光催化甲烷干重整的研究进展[J]. 催化学报, 2023, 53: 72-101.
Yiming Lei, Jinhua Ye, Jordi García-Antón, Huimin Liu. Recent advances in the built-in electric-field-assisted photocatalytic dry reforming of methane[J]. Chinese Journal of Catalysis, 2023, 53: 72-101.
Fig. 1. (a) Fundamental steps involved in photocatalysis. Step 1: exciting the charge-carrier; Step 2: electron/hole separation/transfer; Step 3: reduction and oxidation reactions. (b) Spontaneous polarization in a ferroelectric material induces a built-in electric field that promotes the separation of photoexcited carriers and their reactions. (c) Type-II heterojunction photocatalyst. (d) Direct Z-scheme heterojunction photocatalyst. (e) Schematic depicting plasmon oscillation on a plasmonic metal sphere. (f) Number of publications according to “Web of Science” acquired by searching the keyword: “photocatalysis” with “electric field” or “heterojunction” between 2000 and 2022.
Fig. 3. CH4- and CO2-activation steps in the DRM reaction: (a) Dissociative adsorption of CH4 and desorption of H2. (b) Adsorption of CO2 on the metal, metal-support interface, and support, and the direct formation and desorption of CO.
Fig. 4. (a) Two-dimensional volcano plot of turnover frequency (log10) as functions of O- and C-adsorption energies. T = 500 °C, P = 1 bar; 10% conversion. Error bars include estimated 0.2 eV uncertainties in adsorption energy. Reprinted with permission from Ref. [64]. Copyright 2008, Elsevier. (b) CO2 conversions as functions of time on stream (700 °C) [58]. Reprinted with permission from Ref. [58]. Copyright 2011, Elsevier.
Fig. 5. (a) Energy band structure of various TiO2 samples. Here, the band structure is drawn with respect to the top edge of the VB of TiO2 ST-01 for comparison [72]. Reprinted with permission from Ref. [72] Copyright 2022, Elsevier. (b) Quantum efficiencies (QEs) as functions of temperature (T) [74]. Reprinted with permission from Ref. [74]. Copyright 2016, American Chemical Society.
Fig. 6. Production rates (a) and light-to-fuel efficiencies (b) of CRM catalysts under focused full solar spectrum light from a Xe lamp. (c) Diffusive reflectance absorption spectra of Pt/CeO2-MNR. Reprinted with permission from Ref. [84]. Copyright 2018, Royal Society of Chemistry.
Fig. 7. (a-d) HAADF-STEM elemental-distribution maps for the Cu-Ni-11@CN catalyst. (e) Comparing the amounts of CO2-reduction products over the synthesized catalysts after 5 h of irradiation with light. (f) Reusability testing CH4 generation over the Cu-Ni-11@CN catalyst. Reprinted with permission from Ref. [94]. Copyright 2022 Elsevier B.V.
Fig. 8. (a) Diffusive reflectance spectrum of hm-Ni/Al2O3. (b) Specific H2- and CO-production rates for light-driven catalytic DRM on the samples when illuminated by concentrated UV-vis-IR light (345.6 kW m?2). Reprinted with permission from Ref. [102]. Copyright 2023 Wiley.
Fig. 9. Mechanism associated with ferroelectric polarization and its effect on dry reforming. Reprinted with permission from Ref. [125].Copyright 2016, Elsevier.
Fig. 10. (a) PL spectra of BaTiO3, Fe2O3, and BaTiO3/Fe2O3 with various molar ratios. (b) Efficiencies of various photocatalysts used to reduce CO2 within 4 h. (c) Comparing the photocatalytic performance of the BF31 heterojunction with a physical mixture of BaTiO3 and Fe2O3 with the same molar ratio. Reprinted with permission from Ref. [126]. Copyright 2019, Springer Nature.
Fig. 11. (a) CBED pattern of TaN, which provides asymmetric contrast between (0001) and (0001) diffraction spots that reveals the polarity of the (0001) plane for a non-symmetric crystal structure, such as TaN in the P-62m space group. Catalytic performance of Pt/ZrN (b) and Pt/TiN (c) for the DRM under various reaction conditions. Reprinted with permission from Ref. [127]. Copyright 2018, Wiley.
Fig. 12. Schematic illustrating charge-carrier transfer in a type-I heterojunction with a straddling gap structure (a), a type-II heterojunction with a staggered gap structure (b), and a type-III heterojunction with a broken gap structure (c).
Fig. 13. (a) UV-vis spectra of TiO2, g-C3N4, Ti3AlC2, Ti3C2 24 H 39, Ti3C2 96 H 49, and CN/TCT. (b) PL spectra of TiO2, Ti3C2 24 H 39, Ti3C2 24 H 49, Ti3C2 96 H 39, Ti3C2 96 H 49, and CN/TCT. Photocatalytic production of CO (c) and H2 (d) by Ti3C2 24 H 39, Ti3C2 24 H 49, Ti3C2 96 H 39, Ti3C2 96 H 49, and CN/TCT. (e) Schematic showing the PDRM toward CO and H2 by the CN/TCT photocatalyst. Reprinted with permission from Ref. [144]. Copyright 2021, Elsevier.
Sample | Bandgap (eV) | Valance band (eV) | Conduction band (eV) |
---|---|---|---|
g-C3N4 | 2.83 | 1.47 | −1.36 |
TiO2 anatase | 3.2 | 2.70 | −0.50 |
TiO2 rutile | 3.1 | 2.81 | −0.29 |
CN/TCT | 2.86 | 1.57 | −1.29 |
Table 1 Comparing valance-band, conduction-band, and band-gap (Eg) energies of TiO2, g-C3N4, and the CN/TCT composite catalyst. Reprinted with permission from Ref. [144] Copyright 2021, Elsevier.
Sample | Bandgap (eV) | Valance band (eV) | Conduction band (eV) |
---|---|---|---|
g-C3N4 | 2.83 | 1.47 | −1.36 |
TiO2 anatase | 3.2 | 2.70 | −0.50 |
TiO2 rutile | 3.1 | 2.81 | −0.29 |
CN/TCT | 2.86 | 1.57 | −1.29 |
Fig. 14. Schematic depicting charge-carrier transfer in a conventional Z-scheme photocatalyst (A and D stand for electron acceptor and donor, respectively) (a), an all-solid-state Z-scheme photocatalyst (b), and a direct Z-scheme photocatalyst (c).
Fig. 15. Ex-situ and in-situ high-resolution Ti 2p (a), O 1s (b), C 1s (c), and N 1s (d) XPS spectra. (e) PL emission spectra of g-C3N4, TiO2/g-C3N4, and (25)TiO2-TiC/g-C3N4(400). (f) CO2-photoreduction performance of g-C3N4, TiO2-TiC, TiO2/g-C3N4, and (25)TiO2-TiC/g-C3N4(400). Reaction conditions: P = 40 kPa; CH4:CO2 = 1:2; ambient temperature. Reprinted with permission from Ref. [149]. Copyright 2022, Royal Society of Chemistry (RSC).
Fig. 16. Comparative performance of CoAl-LDH, g-C3N4, Ti3AlC2, CoAl-LDH/g-C3N4, and CoAl-LDH/g-C3N4/Ti3AlC2 for syngas production using the PDRM process: CO (a) and H2 (b) production (a = g-C3N4, b = CoAl-LDH, c = Ti3AlC2, d = 5% CoAl-LDH/g-C3N4, e =?10% CoAl-LDH/g-C3N4, f = 15% CoAl-LDH/g-C3N4, g=?25% CoAl-LDH/g-C3N4, and h?=?15% CoAl-LDH-15% Ti3AlC2/g-C3N4). Comparing the performance of the CoAl-LDH/g-C3N4/Ti3AlC2 composite in PDRM and PBRM processes: CO (c) and H2 (d) production. Reprinted with permission from Ref. [151]. Copyright 2023, Elsevier.
Fig. 17. Schematic depicting the three mechanisms responsible for enhancing plasmonic materials: (i) light absorption and scattering, (ii) hot-electron injection, and (iii) PIRET. Reprinted with permission from Ref. [165]. Copyright 2015, Wiley.
Fig. 18. (a,c) Acquired photocurrent enhancement spectra (black symbols) and electromagnetic simulations (blue lines). (b,d) Full-field electromagnetic simulations of the plasmon-enhanced absorption in a probe region near the Au particle and at the H2O/Fe2O3 interface, which predict strong enhancements near the surface plasmon resonance. The dashed white lines indicate the surface plasmon resonance wavelength for a 50-nm Au nanoparticle located on top of or embedded in semi-infinite Fe2O3, respectively. Reprinted with permission from Ref. [170]. Copyright 2011, American Chemical Society (ACS). (e) H2 and O2 production upon illuminating N-TiO2 (black symbols) and Ag/N-TiO2 (blue symbols) photocatalysts with visible light, as determined by mass spectrometry. (f) Photocurrent responses (per macroscopic electrode area) upon illumination with a broadband visible-light source (400-900 nm). (g) Average electric field enhancement around a Ag cube with a 120-nm edge length as a function of the distance d from the cube, calculated using FDTD simulations. Inset: Local enhancement of the electric field calculated from an FDTD simulation of a 120-nm Ag cube in water. Reprinted with permission from Ref. [173]. Copyright 2011, American Chemical Society (ACS).
Fig. 19. (a) Specific activities over different amounts of Ag-containing composites under simulated solar light. (b) Photocatalytic CO2- and CH4-reformation performance: effect of the light source (visible light, simulated sunlight, and ultraviolet light) over 1%Ag/TiO2 as the catalyst. High-resolution Ag XPS spectra before (c), after (d) reaction under visible light, after reaction under simulated solar light (e), and after irradiation with ultraviolet light (f). Reprinted with permission from Ref. [176]. Copyright 2019, American Chemical Society (ACS). FDTD-simulated spatial distributions of electric field intensity enhancements at wavelengths of 350 and 530 nm: (g,h) Pt/SiO2, (i,j) Au/SiO2, and (k,l) Pt-Au/SiO2. Reprinted with permission from Ref. [177]. Copyright 2018, American Chemical Society (ACS).
Fig. 20. In-situ QXANES spectra recorded during H2-TPR (10?°C min-1, up to 800 °C, for 30 min) of as-prepared 8Ni5Fe/MgAl2O4 at the Fe K edge (a) and the Ni K edge (b). In-situ Fe K edge QXANES spectra recorded during DRM (750 °C, 1 atm, 30 min) of reduced 8Ni5Fe/MgAl2O4 with CH4/CO2 =? 1/2 (c), 1/1.5 (d) and 1/1 (e). Solid lines: experimental spectra; dashed lines: reference spectra; bold arrows highlight spectral evolution during the DRM. Reprinted with permission from Ref. [183]. Copyright 2021, Elsevier.
Fig. 21. In-situ XPS spectra of Ni-Si/ZrO2 and Ni-Zr/SiO2 catalysts after reduction using flowing mixtures of H2 and Ar (F(H2) = F(Ar) = 30 mL min-1 at 450 °C), and CH4 and CO2 (F(CH4) = F(CO2) = 30 mL min-1 at 400 °C): Ni 2p (a,b), Zr 3d (c,d), and O 1s (e,f) for Ni-Si/ZrO2 (a-c) and Ni-Zr/SiO2 (d-f). Reprinted with permission from Ref. [186]. Copyright 2018, American Chemical Society.
Fig. 22. (a) Cobalt-containing-phase weight fractions as functions of temperature during H2-TPR on a 10 wt% Co-CeO2 catalyst. (b) Sequential in-situ XRD patterns acquired during H2-TPR on a 10 wt% Co-CeO2 catalyst. Reprinted with permission from Ref. [191] Copyright 2018, American Chemical Society.
Fig. 23. In-situ DRIFTS spectra acquired in dark DRM reactions on Pt-Ce (a) and Pt-Al-Ce (c). Dark-light comparisons on Pt-Ce (b) and Pt-Al-Ce (d). Reprinted with permission from Ref. [195]. Copyright 2022 Royal Society of Chemistry.
Fig. 24. (a) DFT calculations for TPE-COP and TPE-CHO: HOMO-LUMO transitions. (b) UV-vis spectra of TPE-CHO and TPE-COP. Reprinted with permission from Ref. [197]. Copyright 2023, Elsevier.
Catalyst | Type | Reaction condition | Catalytic performance | Ref. |
---|---|---|---|---|
Rh-Ni/Al2O3 | thermal catalyst | catalyst: 100 mg, total gas flow rate: 0.83 N cm3 s−1, gas hourly space velocity (GHSV) = 6000 h−1, CH4/CO2/He = 20/20/60, temperature: 699.85 °C pressure: 1 atm | CO2 conversion: ~85% CH4 conversion: ~65% H2/CO: ~0.85 | [ |
Pt/CeO2 | photocatalyst | catalyst: 50 mg, light source: 500 W Xe lamp, total gas flow rate: 120.5 mL min−1, CH4/CO2/Ar = 10/10/80 | units: mmol min−1 g−1, CO2 conversion: ~3.2 CH4 conversion: ~2.7 H2: 5.7 CO: 6.0 | [ |
BaZr0.05Ti0.95O3 | ferroelectric non-thermal plasmonic catalyst | catalyst: 0.5 g, DC pulse voltage: 13 kV frequency = 20000 Hz, discharge gap = 5 mm, total gas flow rate: 100 mL min−1, GHSV: 8500 h−1, CH4/CO2 = 1/1 | CO2 conversion: 79.0% conversion CH4 conversion: 84.2% H2 selectivity: 87.5% CO selectivity: 69.2% | [ |
BaTiO3/Fe2O3 | ferroelectric photocatalyst | Hg lamp 125 W, CO2/CH4/He = 45/45/10 pressure: 40 pa, temperature: 30 ± 5 °C | CO2 conversion: 22.3% | |
Pt/TaN | ferroelectric photocatalyst | catalyst: 0.10 g, light source: Xe lamp, total flow rate: 20.0 mL/min, CH4/CO2 = 1/1, temperature: 500 °C | units :μmol min−1 g−1, CO2 conversion: ~700 CH4 conversion: ~550 H2: 1100, CO: 1200 | [ |
Ti3C2/TiO2/g-C3N4 | type-II heterojunction photocatalyst | catalyst: 100 mg, light source: 35 W Xenon lamp, light intensity: 20 mW cm−2, CO2/CH4: 2/1 (10/5 mL min−1), pressure: 0.10 bar | unit: μmol g−1 h−1, H2: 45.69 CO: 87.34, CO selectivity: 65.6% H2 selectivity: 34.40% | [ |
TiO2-TiC/g-C3N4 | all-solid-state Z-scheme heterojunction photocatalyst | catalyst: 50 mg, light source: Xe lamp, light intensity: 335 mW cm−2, pressure: 40 kPa CH4 /CO2 = 1/2, temperature: room temperature | units: μmol g−1 h−1 CO: 11.3 H2: 2.15 | [ |
CoAl-LDH/g-C3N4/Ti3AlC2 | direct Z-scheme heterojunction photocatalyst | catalyst: 100 mg, light source: 35 W Xe lamp, light intensity: 20 mW cm−2, total flow rate: 20 mL min−1, CH4 /CO2 = 1/1, pressure: 0.3 bar | units: μmol g−1 h−1 CO: 22.5 H2: 4.74 | [ |
Ag/TiO2 | plasmonic photocatalyst | catalyst: 100 mg, light source: Xe lamp, light intensity: 84.2 mW cm−2, CO2/CH4/Ar = 7.5/7.5/85, pressure: 2 MPa | units: μmol g−1 h−1 CO: 1149 C2H4: 686 | [ |
Pt/Au-SiO2 | plasmonic photocatalyst | catalyst: 20 mg, light source: Xe lamp, total flow rate: 20.0 mL min-1, CO2/CH4 = 1/1 | units: μmol g−1 h−1, CO2 conversion: ~68.6 CH4 conversion: ~55.0, CO: ~120 H2: ~90 | [ |
Table 2 State-of-the-art thermal-/photo(thermal)-catalysts for the DRM reaction, including product-evolution rates and specific reaction conditions.
Catalyst | Type | Reaction condition | Catalytic performance | Ref. |
---|---|---|---|---|
Rh-Ni/Al2O3 | thermal catalyst | catalyst: 100 mg, total gas flow rate: 0.83 N cm3 s−1, gas hourly space velocity (GHSV) = 6000 h−1, CH4/CO2/He = 20/20/60, temperature: 699.85 °C pressure: 1 atm | CO2 conversion: ~85% CH4 conversion: ~65% H2/CO: ~0.85 | [ |
Pt/CeO2 | photocatalyst | catalyst: 50 mg, light source: 500 W Xe lamp, total gas flow rate: 120.5 mL min−1, CH4/CO2/Ar = 10/10/80 | units: mmol min−1 g−1, CO2 conversion: ~3.2 CH4 conversion: ~2.7 H2: 5.7 CO: 6.0 | [ |
BaZr0.05Ti0.95O3 | ferroelectric non-thermal plasmonic catalyst | catalyst: 0.5 g, DC pulse voltage: 13 kV frequency = 20000 Hz, discharge gap = 5 mm, total gas flow rate: 100 mL min−1, GHSV: 8500 h−1, CH4/CO2 = 1/1 | CO2 conversion: 79.0% conversion CH4 conversion: 84.2% H2 selectivity: 87.5% CO selectivity: 69.2% | [ |
BaTiO3/Fe2O3 | ferroelectric photocatalyst | Hg lamp 125 W, CO2/CH4/He = 45/45/10 pressure: 40 pa, temperature: 30 ± 5 °C | CO2 conversion: 22.3% | |
Pt/TaN | ferroelectric photocatalyst | catalyst: 0.10 g, light source: Xe lamp, total flow rate: 20.0 mL/min, CH4/CO2 = 1/1, temperature: 500 °C | units :μmol min−1 g−1, CO2 conversion: ~700 CH4 conversion: ~550 H2: 1100, CO: 1200 | [ |
Ti3C2/TiO2/g-C3N4 | type-II heterojunction photocatalyst | catalyst: 100 mg, light source: 35 W Xenon lamp, light intensity: 20 mW cm−2, CO2/CH4: 2/1 (10/5 mL min−1), pressure: 0.10 bar | unit: μmol g−1 h−1, H2: 45.69 CO: 87.34, CO selectivity: 65.6% H2 selectivity: 34.40% | [ |
TiO2-TiC/g-C3N4 | all-solid-state Z-scheme heterojunction photocatalyst | catalyst: 50 mg, light source: Xe lamp, light intensity: 335 mW cm−2, pressure: 40 kPa CH4 /CO2 = 1/2, temperature: room temperature | units: μmol g−1 h−1 CO: 11.3 H2: 2.15 | [ |
CoAl-LDH/g-C3N4/Ti3AlC2 | direct Z-scheme heterojunction photocatalyst | catalyst: 100 mg, light source: 35 W Xe lamp, light intensity: 20 mW cm−2, total flow rate: 20 mL min−1, CH4 /CO2 = 1/1, pressure: 0.3 bar | units: μmol g−1 h−1 CO: 22.5 H2: 4.74 | [ |
Ag/TiO2 | plasmonic photocatalyst | catalyst: 100 mg, light source: Xe lamp, light intensity: 84.2 mW cm−2, CO2/CH4/Ar = 7.5/7.5/85, pressure: 2 MPa | units: μmol g−1 h−1 CO: 1149 C2H4: 686 | [ |
Pt/Au-SiO2 | plasmonic photocatalyst | catalyst: 20 mg, light source: Xe lamp, total flow rate: 20.0 mL min-1, CO2/CH4 = 1/1 | units: μmol g−1 h−1, CO2 conversion: ~68.6 CH4 conversion: ~55.0, CO: ~120 H2: ~90 | [ |
|
[1] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[2] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[3] | 韦之栋, 严嘉玮, 郭伟琦, 上官文峰. 多面体SrTiO3原位生长N缺陷PCN中的纳米叠层效应助力光催化完全分解水: 内建电场调控的协同机制[J]. 催化学报, 2023, 48(5): 279-289. |
[4] | 张美玉, 李孔明, 胡春联, 马康伟, 孙万军, 黄现强, 丁勇. Co纳米颗粒修饰的相结CdS光氧化还原合成氢化安息香和产氢[J]. 催化学报, 2023, 47(4): 254-264. |
[5] | 张志洁, 王雪盛, 唐慧玲, 李德本, 徐家跃. 调控Cs3Bi2Br9@VO-In2O3 S型异质结的费米能级和内建电场促进光生电荷分离和二氧化碳还原[J]. 催化学报, 2023, 55(12): 227-240. |
[6] | 刘伟旭, 贺唱, 朱博文, 朱恩伟, 张亚宁, 陈云宁, 李军山, 朱永法. 利用有机超分子光催化剂在太阳光下处理污水的研究进展[J]. 催化学报, 2023, 53(10): 13-30. |
[7] | Jafar Hussain Shah, Anum Shahid Malik, Ahmed Mahmoud Idris, Saadia Rasheed, 韩洪宪, 李灿. Mn掺杂的铁电半导体BiFeO3本征光催化氧化水活性的研究[J]. 催化学报, 2021, 42(6): 945-952. |
[8] | S. Wageh, Ahmed A. Al-Ghamdi, Rashida Jafer, 李鑫, 张鹏. 新型光催化异质结: S型异质结[J]. 催化学报, 2021, 42(5): 667-669. |
[9] | 王娟, 王国宏, 程蓓, 余家国, 范佳杰. 光降解刚果红的S型硫掺杂g-C3N4/TiO2异质结光催化剂[J]. 催化学报, 2021, 42(1): 56-68. |
[10] | 彭进军, 沈珺, 于晓慧, 唐华, Zulfiqar, 刘芹芹. LSPR增强0D/2D CdS/MoO3-x S型异质结的构建及其可见光光催化活性研究[J]. 催化学报, 2021, 42(1): 87-96. |
[11] | 刘志荣, 于欣, 李琳琳. 压电势构建的内建电场增强光催化和光电催化[J]. 催化学报, 2020, 41(4): 534-549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||