催化学报 ›› 2023, Vol. 53: 72-101.DOI: 10.1016/S1872-2067(23)64520-6

• 综述 • 上一篇    下一篇

内建电场辅助光催化甲烷干重整的研究进展

雷一鸣a,b, 叶金花c, Jordi García-Antónb,*(), 刘慧敏a,*()   

  1. a辽宁工业大学化学与环境工程学院, 辽宁锦州121001, 中国
    b巴塞罗那自治大学, 西班牙
    c日本材料科学国家研究所, 材料纳米结构国际研究中心, 日本
  • 收稿日期:2023-07-03 接受日期:2023-09-08 出版日期:2023-10-18 发布日期:2023-10-25
  • 通讯作者: *电子信箱: liuhuimin08@tsinghua.org.cn (刘慧敏), Jordi.GarciaAnton@uab.es (Jordi García-Antón).
  • 基金资助:
    国家自然科学基金(21902116);中国辽宁省科技厅科研基金(2022-MS-379);西班牙科学和创新部(MICINN);西班牙科学和创新部(PID2019-104171RB-I00);西班牙科学和创新部(TED2021-129237B-I00);国家留学基金委(CSC);国家留学基金委(202206250016)

Recent advances in the built-in electric-field-assisted photocatalytic dry reforming of methane

Yiming Leia,b, Jinhua Yec, Jordi García-Antónb,*(), Huimin Liua,*()   

  1. aSchool of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, Liaoning, China
    bDepartament de Química (Unitat de Química Inorgànica), Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Valles, 08193 Barcelona, Spain
    cInternational Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044 Ibaraki, Japan
  • Received:2023-07-03 Accepted:2023-09-08 Online:2023-10-18 Published:2023-10-25
  • Contact: E-mail: iuhuimin08@tsinghua.org.cn (H. Liu), Jordi.GarciaAnton@uab.es (J. García-Antón).
  • About author:Jordi García-Antón received his Ph.D. in Chemistry in 2003 from the Universitat Autònoma de Barcelona (UAB). Then, he pursued a postdoctoral stay at the Laboratoire de Chimie de Coordination (Dr. Chaudret group; Toulouse, France), where his work dealt with the synthesis and characterization of metallic nanoparticles and the study of their surface coordination chemistry. In 2006, Dr. García‐Antón joined the UAB as a lecturer in chemistry, and in 2014 he became an associate professor. His research interest focuses on the preparation of metallic or metal‐oxide nanoparticles through the organometallic approach and their use as (photo)catalysts in artificial photosynthesis processes.
    Huimin Liu is a professor at Liaoning University of Technology in the School of Chemical and environmental engineering. She received her Ph.D. degree from Tsinghua University, China (2013), and then joined Kansai University (2013-2014), National Institute for Materials Science (2014-2017), and University of Sydney (2017) as a post-doctoral researcher. Her research interests are photochemistry, environmental chemistry, and heterogeneous catalyst design.
  • Supported by:
    The National Natural Science Foundation of China(21902116);Scientific Research Foundation of Technology Department of Liaoning Province of China(2022-MS-379);The Spanish Ministry of Science and Innovation(MICINN);The Spanish Ministry of Science and Innovation(PID2019-104171RB-I00);The Spanish Ministry of Science and Innovation(TED2021-129237B-I00);China Scholarship Council(CSC);China Scholarship Council(202206250016)

摘要:

甲烷(CH4)和二氧化碳(CO2)是导致全球变暖的两种主要温室气体. 甲烷干重整技术能够同时消耗两种温室气体并制备氢气(H2)和一氧化碳(CO), 是减少温室效应的理想策略之一. CH4和CO2在热力学上具有很高的稳定性, 所以活化CH4和CO2需要克服较高的能垒, 导致传统的甲烷干重整技术总是需要高热能来触发该反应发生. 光催化技术的发展为在温和条件下启动甲烷干重整反应提供了更多的可能. 然而, 由于光激发载流子之间的快速重组, 光催化效率仍然较低, 难以满足工业需求. 研究人员发现, 通过构建内置电场增强电荷载流子的分离和转移动力学是解决上述问题的可靠策略.

本文首先介绍了甲烷干重整的反应机理和用于甲烷干重整的工业热催化材料. 随后, 总结了光催化甲烷干重整的优点和潜在的光催化材料, 重点介绍了两类催化剂: (1) 由铁电效应产生的永久自发极化进而构筑的内建电场的光催化剂. 由于自发极化引起的电场, 基于铁电材料的光催化剂在促进电荷转移方面显示出较大潜力. (2) 由异质结结构在界面处引发内建电场的光催化剂. 基于两种具有合适能带结构的半导体构建Ⅱ型异质结也是一种有效方法, 由于交错间隙结构, 在界面处形成内置电场, 导致不同半导体分别进行氧化和还原过程. 此外, Z型载流子转移机制可以保留具有更强还原能力的电子和更强氧化能力的空穴, 将较低氧化还原能力的光生载流子重组, 从而通过界面电场促进光催化甲烷干重整过程. (3)局域表面等离激元共振(LSPR)效应引发内建热电场的光催化剂. 金属纳米颗粒在可见-近红外(Vis-NIR)光的照射下会产生共振现象, 将会导致金属中的电子结构不连续, 从而构建局部电场. 因此, LSPR效应在提高光(热)催化甲烷干重整效率方面具有巨大潜力. 随着光催化甲烷干重整技术的发展, 人们对理解反应机理或阐明光催化剂中特定组分在反应中的作用提出了更多要求, 导致原位表征技术和理论计算受到了极大的关注. 最后, 介绍了先进的原位表征和理论计算在该领域应用的主要进展, 并预测了原位表征在光催化甲烷干重整领域的潜在功能, 为从事该领域且处于起步阶段的年轻研究者提供了一定参考.

虽然在光催化甲烷干重整领域已经取得了许多突破和进展, 但仍存在一些挑战需要克服. 根据已有的研究结果, 本文总结了内建电场辅助光催化甲烷干重整领域的主要面临挑战, 并提出了应对这些挑战的可行性策略, 为未来对该领域进行更深入的研究提供借鉴.

关键词: 光催化甲烷干重整, 内建电场, 铁电材料, 异质结光催化剂, LSPR效应

Abstract:

Methane (CH4) and carbon dioxide (CO2) are two major greenhouse gases that contribute to global warming. The dry reforming of methane (DRM) is an ideal method for dealing with the greenhouse effect because it simultaneously consumes CH4 and CO2 to produce syngas. However, conventional technologies require high temperatures to trigger the DRM process owing to the high energy barriers associated with activating CH4 and CO2. While the development of photocatalysts provides opportunities for initiating the DRM under mild conditions, photocatalytic efficiency nonetheless remains unsatisfactory, which is largely attributable to rapid photoexcited charge-carrier recombination. A promising strategy for overcoming this deficiency involves constructing a built-in electric field that enhances the separation and transfer dynamics of charge carriers. This review introduces reaction mechanisms and thermal catalysts for DRM applications. The advantages of photocatalytic DRM (PDRM) and potential photocatalysts are also summarized. Recent advances have enhanced PDRM by introducing electric fields through the fabrication of photocatalysts that exhibit ferroelectric effects (ferroelectric-based photocatalysts), have heterojunction structures, or undergo localized surface plasmon resonance (LSPR). In addition, significant advanced in-situ-characterization studies and theoretical calculations are introduced along with their potential impact to provide young researchers engaged in the PDRM field with simple guidance. Finally, current challenges facing the built-in electric-field-assisted PDRM field are discussed and possible strategies proposed to encourage more in-depth research in this area.

Key words: Photocatalytic dry reforming of methane, Built-in electric field, Ferroelectric materials, Heterojunction photocatalyst, Localized surface plasmon resonance effect