催化学报 ›› 2023, Vol. 53: 13-30.DOI: 10.1016/S1872-2067(23)64530-9
刘伟旭a,1, 贺唱a,1, 朱博文b, 朱恩伟c, 张亚宁d, 陈云宁a, 李军山e, 朱永法a,*()
收稿日期:
2023-09-05
接受日期:
2023-10-06
出版日期:
2023-10-18
发布日期:
2023-10-25
通讯作者:
*电子信箱: 作者简介:
1共同第一作者.
基金资助:
Weixu Liua,1, Chang Hea,1, Bowen Zhub, Enwei Zhuc, Yaning Zhangd, Yunning Chena, Junshan Lie, Yongfa Zhua,*()
Received:
2023-09-05
Accepted:
2023-10-06
Online:
2023-10-18
Published:
2023-10-25
Contact:
*E-mail: About author:
Prof. Yongfa Zhu is currently a full professor of Tsinghua University. He received his BA degree in 1985 from Nanjing University and obtained his master degree in 1988 from Peking University. He had studied and worked at Tsinghua University from 1992 to now and received a PhD degree in 1995. His current research is focused on photocatalysis and application on environmental, energy conversion and anti-tumor. He is the author and co-author of 498 original research papers published in SCI journals. The total cited numbers reached about 46000 and the H-index arrived at 120. About 50 papers were selected as High-Cited Papers by Essential Science Indicators. He is Elsevier highly cited scholar from 2014 to now, and Clarivate highly cited scientist from 2018 to now. Besides, he has written about 5 books and applied about 24 patents. He also serves as the creative editor of Science for Energy and Environment (SEE), the associate editor of Applied Catalysis B, the associate editor of Green Carbon, the vice chairman of China Photosensitive Society and the director of Photocatalytic Committee, and the president of Beijing Indoor and Indoor Environmental Purification Industry Association.1 Contributed equally to this work.
Supported by:
摘要:
对水体中酚类等难降解有机污染物进行深度矿化处理, 实现无毒无害排放, 是提高环境质量, 实现可持续发展的关键. 如何高效去除水体中难降解有机污染物不仅是环境化学污染控制的研究热点, 也是制约工业废水回用的技术瓶颈. 光催化可直接利用太阳光实现污染物的深度矿化和无毒无害排放, 为该难题的解决提供了新思路. 但对传统无机光催化剂而言, 光利用率低、降解速率慢和净化通量低制约了其实际应用. 本文总结了本课题组在利用有机光催化剂降解污染物时提出的三个策略,以进一步推动光催化污水处理技术的实际应用.
针对可见光利用效率低的难题, 发展了一系列有机超分子等新型光催化剂. 通过对共轭结构(生色基团)和侧链基团(助色基团)的调控, 实现了对最高被占分子轨道(HOMO)和最低未占分子轨道(LUMO)能级位置以及吸光能力的调控, 有机半导体光催化剂的降解催化活性可拓展到近红外段, 实现了污染物在太阳光下的降解和深度矿化. 光生空穴可将酚类和抗生素等难降解污染物完全矿化成CO2和水, 建立了可见光下有机半导体光催化剂深度矿化净化水中难降解有机污染物的新方法. 通过构建分子内供体受体(DA)结构和分子间供体-受体(D-A)界面, 将卟啉和苝二酰亚胺类光催化反应活性拓展到近红外段, 太阳光利用效率达70%.
针对难降解有机污染物降解去除速率慢的问题, 建立了通过光催化剂的分子偶极作用调控内建电场及构建超短迁移路径, 进而促进光生电荷的分离和传输, 提升污染物降解和矿化动力学. 通过支链基团种类和位置调控, 发现强极性取代基如羧基、羟基、磺酸基等可以增强偶极作用, 而分子偶极在催化剂内有序排列又可以产生强内建电场, 从而促进光生电荷的快速分离和迁移到表面, 加速污染物的降解反应动力学. 通过提升苝二酰亚胺超分子和聚合物光催化剂的结晶度, 增强了分子间π-π堆积和氢键的有序度, 显著提升了内建电场, 实现了光催化氧化反应活性数量级的提高. 通过光催化剂尺度和多孔结构调节, 电荷迁移距离缩短到纳米和亚纳米量级, 增强了电荷迁移到表面的速率. 发现并证实了π-π堆积间距的缩短可促进电荷传输, 光催化降解活性提高了5-10倍.
针对光催化法降解通量低和芬顿法矿化度低的难题, 提出了在光催化剂上耦合芬顿催化剂的新思路, 创立了光催化原位自芬顿高通量矿化水中有机污染物的新方法. 利用光催化的氧化还原反应特性, 促进了产双氧水中间体的氧化还原循环, 实现了可见光下从纯水到双氧水的高效合成. 四羧基卟啉光催化剂产双氧水的活性从可见拓展到1100 nm的红外段, 太阳能到双氧水的能量转换效率达1.2%, 10 h双氧水积累浓度达到1 wt%, 实现了光催化产双氧水性能的新进展. 通过在氮化碳光催化剂中引入氧源, 使得富氧氮化碳表面生成了大量的酚基和醌基, 产双氧水性能可提高3.5倍. 通过将g-C3N4、苝-3,4,9,10-四羧酸二亚胺等光催化剂耦合芬顿催化剂, 对酚类等难降解污染物的降解活性可提高20倍以上, 矿化度提高到90%, 解决了传统芬顿法需要外加H2O2的难题.
本课题组通过以上三种策略, 解决了光催化去除水体污染物过程中太阳光利用率低、矿化度不足和处理通量有限等缺点. 未来如何增强超分子光催化剂的稳定性、提高光催化效率以及构建非均相自芬顿体系仍是光催化污水处理技术的研究重点.
刘伟旭, 贺唱, 朱博文, 朱恩伟, 张亚宁, 陈云宁, 李军山, 朱永法. 利用有机超分子光催化剂在太阳光下处理污水的研究进展[J]. 催化学报, 2023, 53: 13-30.
Weixu Liu, Chang He, Bowen Zhu, Enwei Zhu, Yaning Zhang, Yunning Chen, Junshan Li, Yongfa Zhu. Progress in wastewater treatment via organic supramolecular photocatalysts under sunlight irradiation[J]. Chinese Journal of Catalysis, 2023, 53: 13-30.
Fig. 2. (a) Photodegradation performance on various probe pollutants by using self-assembled PDINH supramolecular system under visible light irradiation (λ > 420 nm). (b) Degradation rate constants k calculated from (a). (c) Comparison of different photocatalysts for photodegradation of phenol under visible light irradiation. (d) Oxygen evolution from water by self-assembled PDINH supramolecular system and g-C3N4 in the presence of an electron acceptor (0.1 mol L-1 AgNO3) under the visible light (λ > 420 nm). (e) Fluorescence spectra of non-aggregated form (PDINH dissolved in H2SO4) and aggregated form (PDINH aggregation dispersed in water or coated onto a quartz glass). (f) Photocurrents of self-assembled PDINH supramolecular system and commercial PDINH under visible light irradiation (λ > 420 nm). (g) Absorbance and degradation rate constants k of self-assembled PDINH supramolecular system as a function of wavelength, the degradation rate constant k were calculated from wavelength-dependent photodegradation results under irradiation with bandpass filters. Reprinted with permission from Ref. [49]. Copyright 2016, John Wiley and Sons.
Fig. 3. (a) The removal effect of phenol monitored at the water outlet of the continuous flow fixed-bed reactor with a 1 mL min-1 flow rate. (b) Photograph of the microchannel reactor system operating under visible light. (c) Cyclic stability for 500 mL phenol solution per cycle in the microchannel reactor system of C2IPDI with a 15 mL min-1 flow rate. (d) Apparent rate constants (k) for 500 mL of phenol solution in the microchannel reactor system of C2IPDI under different flow rates. Error bars on mean values are standard deviations of three to four independent phenol photodegradation tests. Reprinted with permission from Ref. [54]. Copyright 2023, John Wiley and Sons.
Fig. 4. (a) The photocatalytic hydrogen evolution of TPPS/C60‐NH2 with time under full‐spectrum (674.33 mW cm?2). (b) The comparison of H2 evolution rate under full‐spectrum light. (c) Overlayer of wavelength‐dependent hydrogen evolution and UV-vis absorption. (d) Overlayer of AQE and UV-vis absorption. Reprinted with permission from Ref. [74]. Copyright 2021, John Wiley and Sons.
Fig. 5. The thermodynamic factors for highly efficient photocatalytic oxygen evolution performance of Urea-PDI. (a) UV-vis-NIR diffuse reflection spectrum of Urea-PDI and solar spectrum. (b) Detection of conduction band (CB) position with cyclic voltage measurement. (c) Overlayer of wavelength-dependent oxygen evolution and SPV spectrum. (d) Overlayer of UV-vis-NIR absorption spectrum and apparent quantum yield. Reprinted with permission from Ref. [82]. Copyright 2020, John Wiley and Sons.
Fig. 6. Electronic properties of TCPP. (a) Diagram of molecular dipoles and electrons distribution in three porphyrin derivatives, unit of dipole moment: Debye. (b) UV-vis diffuse reflection spectroscopy (DRS) of SA-TCPP supramolecular photocatalyst, and solar spectrum observed by optical fiber spectrometer. (c) Photocurrent response of SA-TCPP and untreated TCPP powder. Reprinted with permission from Ref. [32]. Copyright 2018, John Wiley and Sons.
Fig. 7. BDO-HC with large built-in electric fields promoting charge separation and mitigation. (a) Illustration for the asymmetry-induced local dipole enhancement. KPFM images (b), Zeta potentials (c), internal electric field intensities (d), SPV profiles (e) and EIS curves (f) of BDOs. Reprinted with permission from Ref. [95]. Copyright 2022, John Wiley and Sons.
Fig. 8. ADF-STEM photodeposition on PTA with Pt and high resolution and mapping (a), Mn2O3 (b) (inset: Mn element liner scan). (c) Schematic illustration of Pt and Mn2O3 photodeposition on PTA under visible light (λ ?≥? 420?nm). Deposition method: 10?mg of PTA was dispersed in 100?mL of deionized water, and 4 wt% H2PtCl6 (weighed by Pt) or 5 wt% MnCl2 (weighed by Mn) was added and exposed to visible light (λ? ≥ ?420?nm) for 3?h. Reprinted with permission from Ref. [98]. Copyright 2022, Springer Nature.
Fig. 9. Tuning the accessibility of micropores to enhance the contribution of micropore-confined excitons. (a) Water adsorption isotherms (solid symbols) and desorption isotherms (hollow symbols) measured at 298.15 K for HOF-H4TBAPy and H4TBAPy powder. P/P0 is the vapour pressure over the saturation pressure. The inset shows the contact angle of H4TBAPy powder. (b) Atomic force microscopy images of HOF-H4TBAPy nanorods of different lengths and their corresponding contact angles with water. (c) Plot of maximum H2 evolution rate as a function of the mean length of the 1D microporous channel of the samples and the relationship between PLQY in ascorbic acid and different 1D channel lengths. The error bars in the direction of the ordinate represent the standard deviation after three individual experiments and the error bars in the direction of the abscissa represent the confidence interval of the average length after Gaussian fitting to the statistical 1D channel length. Data are presented as mean value?±?standard error of the mean. HER, hydrogen evolution reaction. (d) Schematic diagram of HOF-H4TBAPy adsorbing water and hole scavenger. The length of the active adsorption region at both ends was determined to be 0.30 μm. Red., reducing agent; Ox., oxidation product. Reprinted with permission from Ref. [102]. Copyright 2023, Springer Nature.
Fig. 10. (a) H2 evolution by different samples under visible light irradiation. (b) Koutecky-Levich plots of the ORR data measured by RDE analysis for g-C3N4 and OCN-500. (c) the photocatalytic generation of H2O2 with anthracene-9,10-diol (AD) or 1,4-dihydroxybenzene (HQ) or p-benzoquinone (p-BQ) in 10% isopropyl alcohol under visible light irradiation. (d) EPR spectra of g-C3N4 and OCN-500 with DMPO in methanol. Reprinted with permission from Ref. [110]. Copyright 2018, Royal Society of Chemistry.
Fig. 11. H2O2 production performance on SA-TCPP supramolecular photocatalysts. Solution: 50 mL H2O, temperature: 353 K, catalyst: 0.5?g L?1, O2 bubbling. Light source: Xe lamp with a 420 nm cut-off filter. (a) H2O2 production on SA-TCPP supramolecule at 353? and 293 K, respectively, plotted as a function of irradiation time. Error bars on mean values are standard deviations of three independent H2O2 production tests. (b) Stability for H2O2 production of SA-TCPP supramolecule. The horizontal dashed line represents the mean values (2.5 mmol L-1). (c) H2O2 production with different amounts of SA-TCPP supramolecule. Error bars on mean values are standard deviations of three independent H2O2 production tests. The horizontal dashed line represents the maximum accumulation of H2O2 (6.9 mmol L-1). (d) Quantum efficiency on SA-TCPP supramolecular photocatalysts with different bandpass filters (400 ± 10, 420 ± 10, 450 ± 10?nm, 490 ± 10, 530 ± 10, 600 ± 10, 650 ± 10, 700 ± 10, 850 ± 10? and 940 ± 10 nm). (Catalyst: 1.5 g L?1). Error bars on mean values are standard deviations of at least three independent quantum efficiency tests. Reprinted with permission from Ref. [124]. Copyright 2023, Springer Nature.
Fig. 12. (a) Brief description of photo-self-Fenton. (b) Concentration of hydrogen peroxide produced by three photo-self-Fenton systems. Conditions: 5 W LED visible light irradiation for 2 h, under pure water, catalyst dosage = 30 mg, in air. (c) Rate constants and two-hour degradation rates for BPA degradation by three photo-self-Fenton systems. Conditions: 5 W LED visible light irradiation, [BPA] =?20 × 10-6, catalyst dosage = 30 mg. (d) Comparison of photocatalytic degradation activity of BPA by RF self-Fenton system and other superior photocatalysts visible light irradiation (for comparison, g-C3N4 and Bi2WO6 were selected as typical visible-light driven catalysts), Conditions: catalyst dosage = 30 mg, [BPA] =?20?× 10-6, 5 W LED visible light irradiation. (e) Comparison of the degradation performance of RF self-Fenton system and homogeneous Fenton system for different organic pollutants (two-hour hydrogen peroxide yield of RF was used as the hydrogen peroxide addition of Fenton and at the same amount of iron, contaminant concentration was 20 × 10-6). (f) Comparison of the degradation rate constants of C3N4 nanosheets and RF self-Fenton system for phenol. Conditions: catalyst dosage =?30?mg, [PE] =?20 × 10-6, 300?W xenon lamp. Reprinted with permission from Ref. [128]. Copyright 2022, Elsevier.
Catalyst | Pollutants and conc. | Experimental details | Time/h | Degradation efficiency/% | kapp/h-1 | Ref. |
---|---|---|---|---|---|---|
PDINH | Phenol 5 × 10-6 | Cat. = 0.5 g L-1 300 W Xe lamp (λ > 420 nm) | 8 | ~50 | 0.09 | [ |
Bi2WO6 | 8 | ~33 | 0.05 | [ | ||
BiOBr | 8 | ~17 | 0.02 | [ | ||
g-C3N4 | 8 | ~10 | 0.01 | [ | ||
C2IPDI | Phenol 10 × 10-6 | Cat. = 0.5 g L-1 PDS = 5 mmol L-1 500 W Xe lamp (λ > 420 nm) | 0.5 | 93 | 3.96 | [ |
C0IPDI | 0.5 | 8 | 0.12 | [ | ||
C3IPDI | 0.5 | 89 | 3.55 | [ | ||
g-C3N4 | 0.5 | 3 | 0.03 | [ | ||
PDIPA | 0.5 | 14 | 0.25 | [ | ||
PTCDA | 0.5 | 28 | 0.57 | [ | ||
PDINH | 0.5 | 47 | 1.11 | [ | ||
SA-TCPP | 2,4-DCP 5 10-6 | Cat. = 0.5 g L-1 500 W Xe lamp (λ > 420 nm) | 4 | ~86 | 0.37 | [ |
Bi2WO6 | 4 | ~30 | 0.04 | [ | ||
g-C3N4 | 4 | ~24 | 0.02 | [ | ||
RF | BPA 20 × 10-6 | Cat. = 0.6 g L-1 FeCl3·7H2O = 0.25 g L-1 5 W LED (λ > 420 nm) | 2 | ~99 | 1.77 | [ |
CdS/rGO | 2 | ~27 | 0.13 | [ | ||
P-g-C3N4 | 2 | ~30 | 0.17 | [ | ||
SA-TCPP | 2 | ~43 | — | [ | ||
PDI-COOH | 2 | ~22 | — | [ | ||
Bi2WO6 | 2 | ~9 | — | [ | ||
g-C3N4 | 2 | ~30 | — | [ |
Table 1 Comparison of pollutant photodegradation performance using different supramolecular and polymeric organic photocatalysts with typical photocatalysts.
Catalyst | Pollutants and conc. | Experimental details | Time/h | Degradation efficiency/% | kapp/h-1 | Ref. |
---|---|---|---|---|---|---|
PDINH | Phenol 5 × 10-6 | Cat. = 0.5 g L-1 300 W Xe lamp (λ > 420 nm) | 8 | ~50 | 0.09 | [ |
Bi2WO6 | 8 | ~33 | 0.05 | [ | ||
BiOBr | 8 | ~17 | 0.02 | [ | ||
g-C3N4 | 8 | ~10 | 0.01 | [ | ||
C2IPDI | Phenol 10 × 10-6 | Cat. = 0.5 g L-1 PDS = 5 mmol L-1 500 W Xe lamp (λ > 420 nm) | 0.5 | 93 | 3.96 | [ |
C0IPDI | 0.5 | 8 | 0.12 | [ | ||
C3IPDI | 0.5 | 89 | 3.55 | [ | ||
g-C3N4 | 0.5 | 3 | 0.03 | [ | ||
PDIPA | 0.5 | 14 | 0.25 | [ | ||
PTCDA | 0.5 | 28 | 0.57 | [ | ||
PDINH | 0.5 | 47 | 1.11 | [ | ||
SA-TCPP | 2,4-DCP 5 10-6 | Cat. = 0.5 g L-1 500 W Xe lamp (λ > 420 nm) | 4 | ~86 | 0.37 | [ |
Bi2WO6 | 4 | ~30 | 0.04 | [ | ||
g-C3N4 | 4 | ~24 | 0.02 | [ | ||
RF | BPA 20 × 10-6 | Cat. = 0.6 g L-1 FeCl3·7H2O = 0.25 g L-1 5 W LED (λ > 420 nm) | 2 | ~99 | 1.77 | [ |
CdS/rGO | 2 | ~27 | 0.13 | [ | ||
P-g-C3N4 | 2 | ~30 | 0.17 | [ | ||
SA-TCPP | 2 | ~43 | — | [ | ||
PDI-COOH | 2 | ~22 | — | [ | ||
Bi2WO6 | 2 | ~9 | — | [ | ||
g-C3N4 | 2 | ~30 | — | [ |
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[5] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[6] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[7] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[8] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[9] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[10] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[11] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[12] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[13] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[14] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[15] | 余治晗, 关晨, 岳晓阳, 向全军. 碳环渗入的结晶氮化碳S型同质结及其光催化析氢[J]. 催化学报, 2023, 50(7): 361-371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||