催化学报 ›› 2025, Vol. 73: 39-61.DOI: 10.1016/S1872-2067(25)64672-9

• 综述 • 上一篇    下一篇

电化学CO2还原为CH4的研究进展与挑战

熊磊a, 付先彪b()   

  1. a电子科技大学基础与前沿研究院, 四川成都 610054, 中国
    b新加坡国立大学材料科学与工程系, 新加坡, 新加坡
  • 收稿日期:2024-12-24 接受日期:2025-02-19 出版日期:2025-06-18 发布日期:2025-06-12
  • 通讯作者: *电子信箱: xbfu@nus.edu.sg (付先彪).

Recent advances and challenges in electrochemical CO2 reduction to CH4

Lei Xionga, Xianbiao Fub()   

  1. aInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
    bDepartment of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
  • Received:2024-12-24 Accepted:2025-02-19 Online:2025-06-18 Published:2025-06-12
  • Contact: *E-mail: xbfu@nus.edu.sg (X. Fu).
  • About author:Xianbiao Fu (Department of Materials Science and Engineering, National University of Singapore) received his B.S. degree from Central South University (2016) and his Ph.D. from the University of Electronic Science and Technology of China (2021). During his Ph.D. studies, he spent 2 years as a visiting graduate student at Northwestern University and 1 year at Johns Hopkins University. From 2021 to 2024, he conducted postdoctoral research Surface Physics & Catalysis (SurfCat) Center within the Department of Physics at the Technical University of Denmark. In 2022, he was awarded the prestigious Marie Skłodowska-Curie Postdoctoral Fellowship by the European Union. In 2025, he joined the Department of Materials Science and Engineering at the National University of Singapore as an Assistant Professor. His research focuses on electrocatalysis, electrochemical engineering, and electrosynthesis, specifically concentrating on electrochemical ammonia synthesis, nitrogen activation, and ammonia energy. He has published more than 40 peer-reviewed papers in esteemed international journals, with over 20 as the first or co-first author. He is the first or co-first author of publications in Science (2), Nature Materials, Nature Energy, Nature Chemical Engineering (also as corresponding author), Nature Catalysis, and Nature Communications. He is a Young Editorial Board Member of the Nano Letters, Journal of Energy Chemistry, Materials Horizons, Nano Research, and other leading journals. He won the MIT TR35 Innovator Award in 2023, the Carbon Future Young Investigator Award, and the Best Editor Award in 2023 of Nano Research. He is the winner of the 1st Rising Stars in Materials Today Catalysis in 2024.

摘要:

利用可再生能源电力将CO2电化学还原(ECR)为燃料和基础化学品, 是减少CO2排放和建立碳中和过程极具吸引力的途径. 在ECR产物中, 甲烷(CH4)因其高热值(55.5 MJ·kg−1)和清洁燃烧而脱颖而出, 也是天然气的主要成分. 然而, ECR产CH4涉及8质子耦合电子转移步骤, 其缓慢的动力学过程导致活性和选择性难以控制, 是目前ECR产CH4技术面临的主要挑战. 因此, 系统的反应机理研究和高效的催化剂开发是亟待解决的问题.

本文系统总结并讨论了目前ECR产CH4的研究进展和未来应用策略. 首先, 本文结合前期的实验结果、原位表征以及理论计算, 深入探讨了ECR产CH4的反应机理, 包括三种公认的反应途径, 涉及三种关键中间体, 即*CO, *CHO (或*COH)和*H, 且反应决速步均为*CO的第一次氢化即*CO+H++e-→*CHO(或*COH). 根据ECR产CH4的关键催化剂—Cu基材料出发, 从晶面依赖性、尺寸效应和价态调结等方面概括了影响其本征活性的关键因素. 其中, (111)晶面取向和小尺寸的Cu有利于催化ECR产CH4, 而Cu的价态(即Cu0和Cux+)对ECR产物选择性的影响仍存在争议. 随后, 归纳了近期关于ECR转CH4催化剂的设计策略, 包括亚纳米催化剂的开发、Cu/氧化物界面工程和Cu表面改性等. 这些调控策略主要基于三个基本原理: (1)调控ECR关键中间体(*CO)的吸附强度, 诸如电解液离子影响(HCO3-, Cl-, Br-, I-等)、价态调控、界面工程(Cu/氧化物)等; (2)抑制C-C耦合, 诸如降低活性位点数(Cu单原子催化剂和Cu纳米团簇)和降低中间体(*CO)表面覆盖度(如稀释CO2); (3)适度的活性*H物种的活化和转移促进CO2的加氢, 诸如修饰H活化能力优异的组分(金属Mn、甲醛树脂等)、降低pH值等. 最后, 本文基于高分辨率原位表征方法、高效反应器设计和高通量筛选方法应用于ECR高效转化为CH4的未来发展提出了展望.

总而言之, 本文从反应机理的研究和催化剂调控的角度总结了ECR产CH4研究的最新进展, 结合反应机理的研究, 提出了催化剂优化策略的基本原理, 可为今后通过ECR工业化生产CH4的调控策略提供有力参考.

关键词: 电化学CO2还原, CO2-CH4转化, 晶面依赖性, 尺寸效应, Cu基催化剂界面

Abstract:

The electrochemical CO2 reduction (ECR) to hydrocarbon products is an attractive pathway to decrease CO2 emission and advance a carbon-neutral process. Among the products of ECR, methane (CH4) stands out due to its high calorific value, serving as the main component of natural gas. However, the development of ECR catalysts capable of producing CH4 with both high activity and stability remains critically urgent. This review summarizes and explores the research progress and future application strategies for ECR toward CH4 production. Combining experiments, in-situ characterizations, and theoretical calculations, this review examines mechanism of CH4 formation in ECR. It then clarifies key factors affecting Cu-based catalysts for CH4 production, including facet dependence, size effects, and valence states. Next, this review details emerging strategies such as sub-nanoscale catalysts, Cu/oxides interface engineering, and Cu surface modification. Finally, future directions highlight in-situ characterization, reactor design, and high-throughput screening, guiding industrial CH4 production.

Key words: Electrochemical CO2 reduction, CO2-to-CH4 conversion, Facet dependence, Size effects, Cu-based catalysts interface