催化学报 ›› 2025, Vol. 73: 39-61.DOI: 10.1016/S1872-2067(25)64672-9
收稿日期:
2024-12-24
接受日期:
2025-02-19
出版日期:
2025-06-18
发布日期:
2025-06-12
通讯作者:
*电子信箱: xbfu@nus.edu.sg (付先彪).
Received:
2024-12-24
Accepted:
2025-02-19
Online:
2025-06-18
Published:
2025-06-12
Contact:
*E-mail: xbfu@nus.edu.sg (X. Fu).
About author:
Xianbiao Fu (Department of Materials Science and Engineering, National University of Singapore) received his B.S. degree from Central South University (2016) and his Ph.D. from the University of Electronic Science and Technology of China (2021). During his Ph.D. studies, he spent 2 years as a visiting graduate student at Northwestern University and 1 year at Johns Hopkins University. From 2021 to 2024, he conducted postdoctoral research Surface Physics & Catalysis (SurfCat) Center within the Department of Physics at the Technical University of Denmark. In 2022, he was awarded the prestigious Marie Skłodowska-Curie Postdoctoral Fellowship by the European Union. In 2025, he joined the Department of Materials Science and Engineering at the National University of Singapore as an Assistant Professor. His research focuses on electrocatalysis, electrochemical engineering, and electrosynthesis, specifically concentrating on electrochemical ammonia synthesis, nitrogen activation, and ammonia energy. He has published more than 40 peer-reviewed papers in esteemed international journals, with over 20 as the first or co-first author. He is the first or co-first author of publications in Science (2), Nature Materials, Nature Energy, Nature Chemical Engineering (also as corresponding author), Nature Catalysis, and Nature Communications. He is a Young Editorial Board Member of the Nano Letters, Journal of Energy Chemistry, Materials Horizons, Nano Research, and other leading journals. He won the MIT TR35 Innovator Award in 2023, the Carbon Future Young Investigator Award, and the Best Editor Award in 2023 of Nano Research. He is the winner of the 1st Rising Stars in Materials Today Catalysis in 2024.
摘要:
利用可再生能源电力将CO2电化学还原(ECR)为燃料和基础化学品, 是减少CO2排放和建立碳中和过程极具吸引力的途径. 在ECR产物中, 甲烷(CH4)因其高热值(55.5 MJ·kg−1)和清洁燃烧而脱颖而出, 也是天然气的主要成分. 然而, ECR产CH4涉及8质子耦合电子转移步骤, 其缓慢的动力学过程导致活性和选择性难以控制, 是目前ECR产CH4技术面临的主要挑战. 因此, 系统的反应机理研究和高效的催化剂开发是亟待解决的问题.
本文系统总结并讨论了目前ECR产CH4的研究进展和未来应用策略. 首先, 本文结合前期的实验结果、原位表征以及理论计算, 深入探讨了ECR产CH4的反应机理, 包括三种公认的反应途径, 涉及三种关键中间体, 即*CO, *CHO (或*COH)和*H, 且反应决速步均为*CO的第一次氢化即*CO+H++e-→*CHO(或*COH). 根据ECR产CH4的关键催化剂—Cu基材料出发, 从晶面依赖性、尺寸效应和价态调结等方面概括了影响其本征活性的关键因素. 其中, (111)晶面取向和小尺寸的Cu有利于催化ECR产CH4, 而Cu的价态(即Cu0和Cux+)对ECR产物选择性的影响仍存在争议. 随后, 归纳了近期关于ECR转CH4催化剂的设计策略, 包括亚纳米催化剂的开发、Cu/氧化物界面工程和Cu表面改性等. 这些调控策略主要基于三个基本原理: (1)调控ECR关键中间体(*CO)的吸附强度, 诸如电解液离子影响(HCO3-, Cl-, Br-, I-等)、价态调控、界面工程(Cu/氧化物)等; (2)抑制C-C耦合, 诸如降低活性位点数(Cu单原子催化剂和Cu纳米团簇)和降低中间体(*CO)表面覆盖度(如稀释CO2); (3)适度的活性*H物种的活化和转移促进CO2的加氢, 诸如修饰H活化能力优异的组分(金属Mn、甲醛树脂等)、降低pH值等. 最后, 本文基于高分辨率原位表征方法、高效反应器设计和高通量筛选方法应用于ECR高效转化为CH4的未来发展提出了展望.
总而言之, 本文从反应机理的研究和催化剂调控的角度总结了ECR产CH4研究的最新进展, 结合反应机理的研究, 提出了催化剂优化策略的基本原理, 可为今后通过ECR工业化生产CH4的调控策略提供有力参考.
熊磊, 付先彪. 电化学CO2还原为CH4的研究进展与挑战[J]. 催化学报, 2025, 73: 39-61.
Lei Xiong, Xianbiao Fu. Recent advances and challenges in electrochemical CO2 reduction to CH4[J]. Chinese Journal of Catalysis, 2025, 73: 39-61.
Reaction | E0 (V, vs. RHE) | Product |
---|---|---|
2H+ + 2e- → H2 | 0 | H2 |
CO2 + 2H+ + 2e- → HCOOH(aq) | -0.12 | HCOOH |
CO2 + 2H+ + 2e- → CO(g) + H2O | -0.10 | CO |
CO2 + 6H+ + 6e- → CH3OH(aq) + H2O | 0.03 | CH3OH |
CO2 + 8H+ + 8e- → CH4(g) + 2H2O | 0.17 | CH4 |
2CO2 + 8H+ + 8e- → CH3COOH(aq) + 2H2O | 0.11 | CH3COOH |
2CO2 +12H+ + 12e- → C2H4(g) + 4H2O | 0.08 | C2H4 |
2CO2 + 12H+ + 12e- → C2H5OH(aq) + 3H2O | 0.19 | CH3CH2OH |
2CO2 +14H+ + 14e- → C2H6(g) + 4H2O | 0.14 | C2H6 |
3CO2 + 18H+ + 18e- → C3H7OH(aq) + 5H2O | 0.10 | n-CH3CH2CH2OH |
Table 1 The equilibrium potentials for the ECR reaction to different products [16].
Reaction | E0 (V, vs. RHE) | Product |
---|---|---|
2H+ + 2e- → H2 | 0 | H2 |
CO2 + 2H+ + 2e- → HCOOH(aq) | -0.12 | HCOOH |
CO2 + 2H+ + 2e- → CO(g) + H2O | -0.10 | CO |
CO2 + 6H+ + 6e- → CH3OH(aq) + H2O | 0.03 | CH3OH |
CO2 + 8H+ + 8e- → CH4(g) + 2H2O | 0.17 | CH4 |
2CO2 + 8H+ + 8e- → CH3COOH(aq) + 2H2O | 0.11 | CH3COOH |
2CO2 +12H+ + 12e- → C2H4(g) + 4H2O | 0.08 | C2H4 |
2CO2 + 12H+ + 12e- → C2H5OH(aq) + 3H2O | 0.19 | CH3CH2OH |
2CO2 +14H+ + 14e- → C2H6(g) + 4H2O | 0.14 | C2H6 |
3CO2 + 18H+ + 18e- → C3H7OH(aq) + 5H2O | 0.10 | n-CH3CH2CH2OH |
Fig. 3. (a) FEs of ECR to deep-reduction products over single-crystal Cu with (100) and (111) facet. Reprinted with permission from Ref. [41]. Copyright 2020, American Chemical Society. (b) The high-potential methane and ethylene path via COH* on the Cu(100) facet at 0 V vs. reversible hydrogen electrode (RHE) and at -0.9 V vs. RHE. (c) Optimized structures of the transition states involved in *CO reduction to *CHO with the water-solvated model on the Cu(100) facet and to *COH with the H-shuttling model on the Cu(111) facet. (d) The closeup of the H3Oσ+ moiety in the transition state of *COH formation on Cu(100) and Cu(111). Reprinted with permission from Ref. [33]. Copyright 2016, American Chemical Society.
Fig. 4. (a) The ECR FE over Cu nanoparticles with the size range of 2-15 nm and relative population of surface atoms with a specific CN as a function of the particle diameter. Reprinted with permission from Ref. [42]. Copyright 2014, American Chemical Society. (b) The ECR FEs of Cu Oh-NCs with three sizes. Reprinted with permission from Ref. [43]. Copyright 2019, Royal Society of Chemistry. (c) The relative C2+/C1 products ratio of CO reduction over Cu/GDY catalysts with different nano sizes of Cu. Reprinted with permission from Ref. [44]. Copyright 2020, Wiley-VCH GmbH. (d) The relative free energy diagrams of CO2 reduction on the Cu55 NC and the comparison of the potential-limiting steps (*CO → *CHO) for the Cu13, Cu55, and Cu(111) models. Reprinted with permission from Ref. [45]. Copyright 2017, Elsevier.
Fig. 5. (a) Quasi in-situ Cu LMM Auger spectra of Cu nanocubes supported on C paper and on Cu foil before and after 1 h of ECR. (b) The relative FECH4 over different catalysts. Reprinted with permission from Ref. [50]. Copyright 2018, Wiley-VCH GmbH. (c) The scheme of SPVP-Cu NPs and DPVP-Cu NPs with different content of PVP as capping agent. (d) The relative in-situ Raman spectroscopy under ECR condition over SPVP-Cu NPs and DPVP-Cu NPs. Reprinted with permission from Ref. [51]. Copyright 2021, Wiley-VCH GmbH. (e) The Scheme of the self-sacrifice mechanism to protect Cu2+. (f) The Cu 2p XPS spectra of Cu-Ce-Ox before and after ECR. (g) The gas product FEs at different potentials of Cu-Ce-Ox. Reprinted with permission from Ref. [53]. Copyright 2022, American Chemical Society.
Fig. 6. (a) The schematic Cu clusters/DRC with small Cu clusters. The Adsorption energies of *CO (b) and *H (c) intermediates over different structures. Reprinted with permission from Ref. [55]. Copyright 2020, Wiley-VCH GmbH. (d) Schematic of the atomic agglomeration (marked with orange arrows) from CuPc reduction with CNP. (e) Comparison of the metallic Cu-Cu coordination number determined from EXAFS analysis and methanation selectivity. (f) The maximum FE toward CH4 and C2H4 for samples with different CNP to CuPc ratios. Reprinted with permission from Ref. [57]. Copyright 2021, Springer Nature. (g) The schematic of Cu2O@CuHHTP with Cu2O clusters. (h) TEM images of Cu2O@CuHHTP. (i) The free-energy diagrams of CO2 reduction to CH4 for Cu2O-(111)@HHTP and pristine Cu2O(111) crystal plane. Reprinted with permission from Ref. [58]. Copyright 2020, Wiley-VCH GmbH.
Fig. 7. (a) Schematic of the Cu-N-C-T catalysts with different Cu-Cu distances. (b) The faradaic efficiencies, partial current densities of CH4 and C2H4 (top panel, right y-axis), and the ratios of CH4/C2H4 (bottom panel) for Cu-N-C-T catalysts. Reprinted with permission from Ref. [61]. Copyright 2020, American Chemical Society. (c) Schematic illustration of Cu SAs/GDY for ECR to CH4. Reprinted with permission from Ref. [62]. Copyright 2022, Wiley-VCH GmbH. (d) Schematic illustration of electron-push-pull. (e) The average valance state of the prepared Cu SA/R-GDY. Reprinted with permission from Ref. [63]. Copyright 2022, Wiley-VCH GmbH. (f) Scheme of the Cu-CD catalysts with Cu-N2O2 configuration. (g) DFT simulations of hydrogen evolution on CuN2O2 (Cu-CDs), CuN4, and Cu(111). Reprinted with permission from Ref. [65]. Copyright 2021, Springer Nature. (h) The thermodynamic trend for ECR to CH4 at -1.2 V vs. RHE, as a function with Gad(CHO*) on Cu-NxBy. Reprinted with permission from Ref. [66]. Copyright 2023, Springer Nature.
Fig. 8. (a) The adsorption energy profile of *CO, *H, and co-adsorption of *CO and *H on CoPc and ZnN4, respectively. (b) CH4/CO production rate ratio over CoPc@Zn-N-C and Zn-N-C. (c) A proposed reaction mechanism of ECR to CH4 over CoPc@Zn-N-C. Reprinted with permission from Ref. [67]. Copyright 2020, American Chemical Society. (d) Schematic illustration of SA-Zn/MNC for ECR to CH4. (e) The comparison of CH4. Faradic efficiency for SA-Zn/MNC with other catalysts. Reprinted with permission from Ref. [68]. Copyright 2023, Wiley-VCH GmbH.
Fig. 9. (a) Schematic of switching ECR production toward CH4 and C2H4 as well as the reaction-free energies of the C2H4 pathway and the CH4 pathway over Cu(111), Cu1/CeO2(111), and Cu7/CeO2(111). Reprinted with permission from Ref. [71]. Copyright 2024, American Chemical Society. (b) Schematic illustration of regulating the ECR pathway for C2+ and CH4 production by CuSm-Ox with distinct ratios. (c) Average FEs of C2+ and CH4 products at the current density of 500 mA·cm-2 over different feeding ratios of Cu/Sm catalysts. Reprinted with permission from Ref. [72]. Copyright 2023, American Chemical Society.
Fig. 10. (a) Schematic illustration of the influence of *CO configuration on the ECR selectivity towards C2+ or CH4 over different catalysts. (b) The percentage of *COLFB at different potentials over different catalysts. Reprinted with permission from Ref. [74]. Copyright 2022, American Chemical Society. (c) In-situ ATR-SEIRA study of key reaction intermediate *COads. (d) Potential-dependent *COads population normalized by ECSA. (e) Normalized *COads population of the three samples at -1.1 V and their corresponding COads composition. Reprinted with permission from Ref. [76]. Copyright 2024, American Chemical Society.
Fig. 11. (a) Schematic illustration for the Synthesis of Cu/CeO2@C. Reprinted with permission from Ref. [88]. Copyright 2023, American Chemical Society. (b) Schematic illustration of the accelerating *CO hydrogenation over Cu-np/NC catalysts. Reprinted with permission from Ref. [89]. Copyright 2022, The Royal Society of Chemistry. (c) The scheme for synthesizing core-shell Cu@NxC catalysts. (d) The potential-dependent integral area ratio of *COL and *COB. (e) The DFT calculation for ΔE of *CO intermediate on different surfaces. (f) The scheme for the proposed mechanistic pathways of CH4 and C2H4 over the Cu@NxC-350 °C and Cu@NxC-400 °C catalysts. Reprinted with permission from Ref. [90]. Copyright 2023, American Chemical Society.
Fig. 12. (a) Dopant addition blocks C-C coupling and shifts the product distribution toward methane. Reprinted with permission from Ref. [91]. Copyright 2022, Elsevier. (b) Schematic Illustration of CO2-dilution strategy to regulate the ECR selectivity to CH4. (c) Reaction energies of two competing reactions (protonation of *CO to *CHO, and C-C coupling) under different *CO coverages. (d) The ECR gas product distribution under different applied current densities using pure CO2 and CO2 concentration of 75%. Reprinted with permission from Ref. [92]. Copyright 2020, American Chemical Society. (e) Schematic diagrams showing the *CO flux in Ag@Cu2O-x NCs with varying envelope sizes of the OD-Cu, and the modulation of reduction products by emanative *CO molecules generated from the Ag core. Reprinted with permission from Ref. [93]. Copyright 2021, Wiley-VCH GmbH.
Fig. 13. (a) Schematic illustration of the different *CO and *H coverages for ECR to CH4, C2H4, and H2 on CuxZnyMnz catalysts. Reprinted with permission from Ref. [94]. Copyright 2023, Wiley-VCH GmbH. (b) Schematic illustration of the hydrophobic core-shell architecture, which can constrain H2O availability via hydrophobic carbon coating. Reprinted with permission from Ref. [95]. Copyright 2022, The Royal Society of Chemistry. (c) Schematic illustration of the regulation of proton-transfer dynamics to control the ECR products over C2+ or CH4. (d) Energy barriers of *CO hydrogenation and coupling processes with different hydrogen coverage situations. Reprinted with permission from Ref. [96]. Copyright 2024, American Chemical Society.
Fig. 14. (a) Stationary CH4 Faradaic selectivity of ECR as a function of potentials and schematic illustration of how the presence of I- affects the net charge of Cu, making it more negative and facilitating the charge transfer for CO reduction. Reprinted with permission from Ref. [97]. Copyright 2016 American Chemical Society. (b) Schematic illustrations for the structures of an electric double layer under pulsed CP mode. (c) Schematic illustration for the ECR route in the electrolyte with F-, Cl-, and HCO3-. Reprinted with permission from Ref. [99]. Copyright 2023, American Chemical Society.
Fig. 15. The free energy profiles of electrochemical CO reduction at pH = 1 (a) and pH = 7 (b). Reprinted with permission from Ref. [101]. Copyright 2016, American Chemical Society. (c) The logarithms of CH4 partial current densities plotted in RHE scale. The logarithms of partial current densities for CH4 formation vs. logarithms of pCO at electrolyte pH of 13.9 (d) and 9.0 (e). Reprinted with permission from Ref. [102]. Copyright 2021, Springer Nature.
Proposed reaction path | Tafel slopea | CO order (high θCO) | pH dependent | |
---|---|---|---|---|
A | *CO + H2O + e- →*CO(H) + OH- (RDS) | 118 mV∙dec-1 | 0 | No |
*CO(H) + *H → *CO(H)2 +* | ||||
B | *CO + H2O + e- →*CO(H) + OH- | 59 mV∙dec-1 | Negative | Yes |
*CO(H) + *H → *CO(H)2 + *(RDS) |
Table 2 The summary of proposed reaction schemes for CH4 formation.
Proposed reaction path | Tafel slopea | CO order (high θCO) | pH dependent | |
---|---|---|---|---|
A | *CO + H2O + e- →*CO(H) + OH- (RDS) | 118 mV∙dec-1 | 0 | No |
*CO(H) + *H → *CO(H)2 +* | ||||
B | *CO + H2O + e- →*CO(H) + OH- | 59 mV∙dec-1 | Negative | Yes |
*CO(H) + *H → *CO(H)2 + *(RDS) |
Category | Catalyst | Reactor | Electrolyte | E (V vs. RHE) | FECH4 (%) | jCH4 (mA·cm-2) | CEEa (%) | Stability | Ref. |
---|---|---|---|---|---|---|---|---|---|
Sub- nanoscale catalysts | CuPc | H-Cell | 0.5 mol·L-1 KHCO3 | -1.06 | 66 | 13 | 30.6 | — | [ |
CNP:CuPc (4:1) | MEA | 0.05 mol·L-1 KHCO3 | — | 62 | 136 | — | > 110 h | [ | |
Cu clusters/DRC | H-Cell | 0.5 mol·L-1 KHCO3 | -1.0 | 81.7 | — | 38.8 | 40 h | [ | |
Cu2O@CuHHTP | H-Cell | 0.1 mol·L-1 KCl + 0.1 mol·L-1 KHCO3 | -1.4 | 73 | 10.8 | 29.4 | 1.5 h | [ | |
us-Cu-np. | flow cell | 1 mol·L-1 KOH | -1.2 | 68 | 323 | 29.7 | > 8 h | [ | |
Cu-N-C-900 | H-Cell | 0.5 mol·L-1 KHCO3 | -1.6 | 38.6 | 14.8 | 14.5 | — | [ | |
Cu SAs/GDY | H-Cell | 0.1 mol·L-1 KHCO3 | -1.2 | 66 | 40 | 28.8 | 10 h | [ | |
Cu SA/F-GDY | flow cell | 1 mol·L-1 KOH | -1.2 | 72.3 | — | 31.5 | 11 h | [ | |
Cu SAs/HGDY | flow cell | 1 mol·L-1 KOH | -1.1 | 72.1 | 230.7 | 32.8 | 11 h/MEA | [ | |
Cu-CDs | H-Cell | 0.5 mol·L-1 KHCO3 | -1.44 | 78 | 40 | 31.0 | 6 h | [ | |
BNC-Cu | H-Cell | 0.5 mol·L-1 KHCO3 | -1.46 | 73 | 292 | 28.8 | 8 h | [ | |
EDTA/CuPc/CNP | MEA | 0.005 mol·L-1 H2SO4 | — | 71 | 71 | — | 5 h | [ | |
CoPc@Zn-N-C | flow cell | 1 mol·L-1 KOH | -1.24 | 18 ± 2 | 44±7 | 7.7±0.9 | — | [ | |
SA-Zn/MNC | H-Cell | 1 mol·L-1 KHCO3 | -1.8 | 85 | 31.8 | 29.7 | 35 h | [ | |
DAT electrode | MEA | 0.1 mol·L-1 KHCO3 | — | 52 ± 4 | 130 ± 10 | — | 10 h/10 A | [ | |
Cu/oxides interface engineering | La2CuO4 | flow cell | 1 mol·L-1 KOH | -1.4 | 56.3 | 117 | 22.7 | — | [ |
Cu-Ce-Ox | flow cell | 1 mol·L-1 KOH | -1.4 | 67.8 | 135.6 | 27.3 | 6 h | [ | |
Cu1Sm9-Ox | flow cell | 1 mol·L-1 KOH | — | 65 | 325 | — | 84 h | [ | |
Cu2O-CeO2-w | H-Cell | 0.1 mol·L-1 KHCO3 | -1.1 | 40 ± 1 | — | 18.2 ± 0.5 | 10 h | [ | |
Cu5Ce95Ox | flow cell | 1 mol·L-1 KOH | -1.2 | 61.2 | 230 | 26.7 | 500 h | [ | |
Cu‐CeO2‐4% | H-Cell | 0.1 mol·L-1 KHCO3 | -1.8 | 58 | 56 | 20.3 | 2.5 h | [ | |
CeO2 cluster-7%Cu | flow cell | 1 mol·L-1 KOH | — | 67.1 | 268.4 | — | 3.3 h | [ | |
Cu/ceria-H2 | flow cell | 1 mol·L-1 KOH | -1.49 | 70.0 | 105 | 27.3 | 7.5 h | [ | |
Cu/p-Al2O3 SAC | flow cell | — | -1.2 | 62 | 153.0 | 27.0 | — | [ | |
Cu surface modification | Cu8-(MMI)4(tBuS)4 | flow cell | 1 mol·L-1 KOH | -1.2 | 53.7 | 89.1 | 23.4 | 24 h/MEA | [ |
Ga-doped CuAl | flow cell | 1 mol·L-1 KHCO3 | -1.4 | 53 | 109 | 21.4 | 11 h | [ | |
Cu catalysts | flow cell | 1 mol·L-1 KHCO3 | — | 48 ± 2 | 108 ± 5 | — | 22 h | [ | |
Ag@Cu2O-6.4 NCs | flow cell | 1 mol·L-1 KOH | -1.2 | 74 ± 2 | 178 ± 5 | 32.3 ± 0.9 | 5.5 h | [ | |
Cu/CeO2@C | flow cell | 1 mol·L-1 KOH | -1.5 | 80.3 | 138.6 | 31.2 | 9 h | [ | |
Cu-np/NC | flow cell | 1 mol·L-1 KOH | — | 73.4 | 234 | — | 50 h/MEA | [ | |
Cu8ZnMn | flow cell | 1 mol·L-1 KOH | -2.2 | 55 ± 2.8 | 418 ± 22 | 17.0 ± 0.9 | 6 h | [ | |
H-CuOx@C | flow cell | 1 mol·L-1 KOH | -1.6 | 73 ± 6 | 366.5 | 27.3 ±2.2 | 6 h | [ | |
Cu2O@RF | flow cell | 1 mol·L-1 KHCO3 | — | 51 | 561 | — | — | [ | |
Sputtered Cu | flow cell | 1 mol·L-1 H3PO4+3 mol·L-1 KCl | — | 27 | 162 | — | — | [ | |
Cu-PTFE | flow cell | 0.005 mol·L-1 H2SO4 + 1 mol·L-1 Na2SO4 | — | 48 | 105.6 | — | — | [ | |
Cu-3 | flow cell | 0.005 mol·L-1 H2SO4 + 0.5 mol·L-1 Na2SO4 | — | 51.2 | 307.2 | — | 4.4 h | [ |
Table 3 Comparison of catalytic performance for recently reported electrocatalysts towards ECR to CH4.
Category | Catalyst | Reactor | Electrolyte | E (V vs. RHE) | FECH4 (%) | jCH4 (mA·cm-2) | CEEa (%) | Stability | Ref. |
---|---|---|---|---|---|---|---|---|---|
Sub- nanoscale catalysts | CuPc | H-Cell | 0.5 mol·L-1 KHCO3 | -1.06 | 66 | 13 | 30.6 | — | [ |
CNP:CuPc (4:1) | MEA | 0.05 mol·L-1 KHCO3 | — | 62 | 136 | — | > 110 h | [ | |
Cu clusters/DRC | H-Cell | 0.5 mol·L-1 KHCO3 | -1.0 | 81.7 | — | 38.8 | 40 h | [ | |
Cu2O@CuHHTP | H-Cell | 0.1 mol·L-1 KCl + 0.1 mol·L-1 KHCO3 | -1.4 | 73 | 10.8 | 29.4 | 1.5 h | [ | |
us-Cu-np. | flow cell | 1 mol·L-1 KOH | -1.2 | 68 | 323 | 29.7 | > 8 h | [ | |
Cu-N-C-900 | H-Cell | 0.5 mol·L-1 KHCO3 | -1.6 | 38.6 | 14.8 | 14.5 | — | [ | |
Cu SAs/GDY | H-Cell | 0.1 mol·L-1 KHCO3 | -1.2 | 66 | 40 | 28.8 | 10 h | [ | |
Cu SA/F-GDY | flow cell | 1 mol·L-1 KOH | -1.2 | 72.3 | — | 31.5 | 11 h | [ | |
Cu SAs/HGDY | flow cell | 1 mol·L-1 KOH | -1.1 | 72.1 | 230.7 | 32.8 | 11 h/MEA | [ | |
Cu-CDs | H-Cell | 0.5 mol·L-1 KHCO3 | -1.44 | 78 | 40 | 31.0 | 6 h | [ | |
BNC-Cu | H-Cell | 0.5 mol·L-1 KHCO3 | -1.46 | 73 | 292 | 28.8 | 8 h | [ | |
EDTA/CuPc/CNP | MEA | 0.005 mol·L-1 H2SO4 | — | 71 | 71 | — | 5 h | [ | |
CoPc@Zn-N-C | flow cell | 1 mol·L-1 KOH | -1.24 | 18 ± 2 | 44±7 | 7.7±0.9 | — | [ | |
SA-Zn/MNC | H-Cell | 1 mol·L-1 KHCO3 | -1.8 | 85 | 31.8 | 29.7 | 35 h | [ | |
DAT electrode | MEA | 0.1 mol·L-1 KHCO3 | — | 52 ± 4 | 130 ± 10 | — | 10 h/10 A | [ | |
Cu/oxides interface engineering | La2CuO4 | flow cell | 1 mol·L-1 KOH | -1.4 | 56.3 | 117 | 22.7 | — | [ |
Cu-Ce-Ox | flow cell | 1 mol·L-1 KOH | -1.4 | 67.8 | 135.6 | 27.3 | 6 h | [ | |
Cu1Sm9-Ox | flow cell | 1 mol·L-1 KOH | — | 65 | 325 | — | 84 h | [ | |
Cu2O-CeO2-w | H-Cell | 0.1 mol·L-1 KHCO3 | -1.1 | 40 ± 1 | — | 18.2 ± 0.5 | 10 h | [ | |
Cu5Ce95Ox | flow cell | 1 mol·L-1 KOH | -1.2 | 61.2 | 230 | 26.7 | 500 h | [ | |
Cu‐CeO2‐4% | H-Cell | 0.1 mol·L-1 KHCO3 | -1.8 | 58 | 56 | 20.3 | 2.5 h | [ | |
CeO2 cluster-7%Cu | flow cell | 1 mol·L-1 KOH | — | 67.1 | 268.4 | — | 3.3 h | [ | |
Cu/ceria-H2 | flow cell | 1 mol·L-1 KOH | -1.49 | 70.0 | 105 | 27.3 | 7.5 h | [ | |
Cu/p-Al2O3 SAC | flow cell | — | -1.2 | 62 | 153.0 | 27.0 | — | [ | |
Cu surface modification | Cu8-(MMI)4(tBuS)4 | flow cell | 1 mol·L-1 KOH | -1.2 | 53.7 | 89.1 | 23.4 | 24 h/MEA | [ |
Ga-doped CuAl | flow cell | 1 mol·L-1 KHCO3 | -1.4 | 53 | 109 | 21.4 | 11 h | [ | |
Cu catalysts | flow cell | 1 mol·L-1 KHCO3 | — | 48 ± 2 | 108 ± 5 | — | 22 h | [ | |
Ag@Cu2O-6.4 NCs | flow cell | 1 mol·L-1 KOH | -1.2 | 74 ± 2 | 178 ± 5 | 32.3 ± 0.9 | 5.5 h | [ | |
Cu/CeO2@C | flow cell | 1 mol·L-1 KOH | -1.5 | 80.3 | 138.6 | 31.2 | 9 h | [ | |
Cu-np/NC | flow cell | 1 mol·L-1 KOH | — | 73.4 | 234 | — | 50 h/MEA | [ | |
Cu8ZnMn | flow cell | 1 mol·L-1 KOH | -2.2 | 55 ± 2.8 | 418 ± 22 | 17.0 ± 0.9 | 6 h | [ | |
H-CuOx@C | flow cell | 1 mol·L-1 KOH | -1.6 | 73 ± 6 | 366.5 | 27.3 ±2.2 | 6 h | [ | |
Cu2O@RF | flow cell | 1 mol·L-1 KHCO3 | — | 51 | 561 | — | — | [ | |
Sputtered Cu | flow cell | 1 mol·L-1 H3PO4+3 mol·L-1 KCl | — | 27 | 162 | — | — | [ | |
Cu-PTFE | flow cell | 0.005 mol·L-1 H2SO4 + 1 mol·L-1 Na2SO4 | — | 48 | 105.6 | — | — | [ | |
Cu-3 | flow cell | 0.005 mol·L-1 H2SO4 + 0.5 mol·L-1 Na2SO4 | — | 51.2 | 307.2 | — | 4.4 h | [ |
Fig. 16. (a) Schematic illustration of cation-augmenting layer (CAL) in acidic electrolyte. (b) FE toward H2 and CH4 on sputtered Cu catalyst at different current densities in 1 mol·L-1 H3PO4 and 3 mol·L-1 KCl. (c) FE toward all products on sputtered Cu catalyst in 1 mol·L-1 H3PO4 with different KCl concentrations at 400 mA?cm-2. Reprinted with permission from Ref. [103]. Copyright 2021, American Association for the Advancement of Science. (d) FECH4:FEC2+ on Cu-PTFE with different electrolytes at different current densities. (e) The adsorption energy comparisons for proton and CO2 on Cu surfaces with different cations. (f) The adsorption energy comparisons of key adsorbates CHO* and OCCO* on Cu surfaces with different cations. Reprinted with permission from Ref. [104]. Copyright 2022, Wiley-VCH GmbH. Schematic of proposed mechanism for hydrogenation of *CO intermediate near electrode surface without (g) or with (h) 18-C-6 molecule. (i) Formation rate and KIE value of CH4 on Cu and Cu-3 catalysts at 1.05 V using 0.5 M K2SO4 electrolyte with H2O or D2O as the solvent. Reprinted with permission from Ref. [105]. Copyright 2023, Wiley-VCH GmbH.
Fig. 17. The development outlook of the ECR mechanisms and catalytic performance suitable for industrial application. (a) The development of high-resolution in-situ characterization method. (b) The schematic diagram of the cascade ECR device. (c) The high-throughput screening.
|
[1] | 王铭智, 房文生, 朱德雨, 夏琛沣, 郭巍, 夏宝玉. 电化学CO2还原催化剂与反应器串联设计[J]. 催化学报, 2025, 69(2): 1-16. |
[2] | 杨艳玲, 韩沛杰, 张元宝, 林敬东, 万绍隆, 王勇, 刘海超, 王帅. 用于间甲酚高效加氢脱氧制芳烃的负载型W2C纳米催化剂的活性位研究[J]. 催化学报, 2024, 67(12): 91-101. |
[3] | 卢思宇, 杨海艳, 周紫璇, 钟良枢, 李圣刚, 高鹏, 孙予罕. 双功能催化剂催化CO2加氢制低碳烯烃反应中In2O3的尺寸效应[J]. 催化学报, 2021, 42(11): 2038-2048. |
[4] | 魏晋欣, 陈雅文, 张鸿洋, 庄赞勇, 于岩. S-型分级多孔CdS/UiO-66光催化剂的构建实现4-硝基苯胺的高效还原[J]. 催化学报, 2021, 42(1): 78-86. |
[5] | 马雷, 严丽, 陆安慧, 丁云杰. Ni-Re/SiO2催化剂中Ni颗粒尺寸对乙醇胺催化胺化反应的影响[J]. 催化学报, 2019, 40(4): 567-579. |
[6] | 王升扬, 曾斌, 李灿. 金纳米粒子的尺寸以及金-二氧化钛相互作用对表面等离激元光催化产氧的影响[J]. 催化学报, 2018, 39(7): 1219-1227. |
[7] | 林坚, 王晓东, 张涛. 铂族金属催化剂低温CO氧化研究近期进展[J]. 催化学报, 2016, 37(11): 1805-1813. |
[8] | Hiroaki Koga, Kohei Sakata, Yoshinori Ato, Akihide Hayashi, Kohei Tada, Mitsutaka Okumur. 聚合物稳定的金纳米簇催化:理论计算与实验的相互影响[J]. 催化学报, 2016, 37(10): 1588-1593. |
[9] | 张贵荣, 徐柏庆. Au催化剂对于碱性电解质中氧气电化学还原反应的纳米尺寸效应[J]. 催化学报, 2013, 34(5): 942-948. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||