催化学报 ›› 2025, Vol. 72: 314-322.DOI: 10.1016/S1872-2067(25)64680-8

• 论文 • 上一篇    下一篇

酸性分子筛上CO2与丙烷制芳烃中碳原子高效利用

李诚a,b, 房旭东a,*(), 李斌a,b, 闫思杨c, 陈之旸a, 杨磊磊a,b, 郝邵雯a,b, 刘红超a, 刘家旭c,*(), 朱文良a,*()   

  1. a中国科学院大连化学物理研究所, 低碳催化国家工程研究中心, 辽宁大连 116023
    b中国科学院大学, 北京 100049
    c大连理工大学化工学院, 精细化工国家重点实验室, 智能材料前沿科学中心, 辽宁大连 116012
  • 收稿日期:2025-01-24 接受日期:2025-03-26 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: xdfang@dicp.ac.cn (房旭东),liujiaxu@dlut.edu.cn (刘家旭),wlzhu@dicp.ac.cn (朱文良).
  • 基金资助:
    国家自然科学基金(22402179);国家自然科学基金(22472016);国家自然科学基金(21991094);国家自然科学基金(21991090);中国科学院战略先导专项“清洁能源转化技术与示范”(XDA21030100);大连市高层次人才创新支持计划(2017RD07);国家高层次人才专项支持计划(SQ2019RA2TST0016)

Efficient carbon integration of CO2 in propane aromatization over acidic zeolites

Cheng Lia,b, Xudong Fanga,*(), Bin Lia,b, Siyang Yanc, Zhiyang Chena, Leilei Yanga,b, Shaowen Haoa,b, Hongchao Liua, Jiaxu Liuc,*(), Wenliang Zhua,*()   

  1. aNational Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
    cState Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, Liaoning, China
  • Received:2025-01-24 Accepted:2025-03-26 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: xdfang@dicp.ac.cn (X. Fang), liujiaxu@dlut.edu.cn (J. Liu), wlzhu@dicp.ac.cn (W. Zhu).
  • Supported by:
    National Natural Science Foundation of China(22402179);National Natural Science Foundation of China(22472016);National Natural Science Foundation of China(21991094);National Natural Science Foundation of China(21991090);“Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21030100);Dalian High Level Talent Innovation Support Program(2017RD07);National Special Support Program for High Level Talents(SQ2019RA2TST0016)

摘要:

芳烃作为现代工业体系的关键基础化学品, 在合成树脂、纤维、医药等领域应用广泛. 传统石油基生产路线高度依赖石脑油催化重整, 面临石油资源短缺与碳排放双重压力. 与此同时, CO2作为典型温室气体, 其资源化利用兼具减排与碳资源高效转化的战略价值, 但受限于其热力学稳定性, 通过加氢路径高选择性制芳烃仍存在挑战. 丙烷作为天然气、页岩气的主要成分, 直接芳构化时因碳氢比失衡导致大量小分子烷烃副产物生成, 限制了芳烃选择性. 因此, 开发CO2与丙烷耦合转化制芳烃新路线, 突破碳氢限制, 定向提高芳烃选择性, 实现低碳烷烃资源高值化利用, 对构建绿色低碳的芳烃生产技术体系具有重要科学意义和工业应用潜力.

本文创新性地提出酸性分子筛催化CO2与丙烷耦合定向转化制芳烃的新策略. 选用具有十元环孔道结构的H-ZSM-5分子筛为催化剂, 系统对比了丙烷在Ar/CO2气氛下的转化行为. 实验结果表明, CO2的引入显著提升芳烃选择性, 在723 K, 3.0 MPa, C3H8/CO2 = 1:120条件下, 丙烷转化率达48.8%, 芳烃选择性提升至60.2%, 较Ar气氛下提高约30%. 通过调控分子筛Brönsted酸量发现, 提高Brönsted酸量可抑制小分子烷烃生成, 促进丙烷向芳烃的定向转化. 这表明CO2氛围下的丙烷芳构化过程是有异于传统氢转移机理的Brönsted酸催化过程. 通过双光束原位红外光谱、13C同位素标记实验、丙烷程序升温表面反应实验和探针分子实验, 证明了烯烃和内酯是关键中间物种, 且CO2中的碳原子直接参与芳环形成, 提出了CO2与丙烷在酸性分子筛上基于烯烃和内酯的耦合转化新机制, 即“丙烷裂解/脱氢→烯烃-CO2耦合形成内酯→芳烃”的多步反应机制, 其中CO2通过与烯烃结合调控氢转移过程, 突破传统芳构化反应的碳氢平衡限制.

综上, 本文为CO2与低碳烷烃耦合制芳烃提供了新思路, 通过揭示含氧中间体介导的反应机制, 深化了对复杂耦合反应过程的理解. 未来可进一步优化分子筛孔道结构与酸性位点分布, 提高芳烃收率. 本工作不仅为石化行业“减油增化”转型提供新的思路, 也为实现CO2大规模资源化利用和“双碳”目标贡献了催化科学新方案.

关键词: CO2利用, 丙烷芳构化, 耦合效应, 酸性分子筛, 内酯

Abstract:

Direct converting carbon dioxide (CO2) and propane (C3H8) into aromatics with high carbon utilization offers a desirable opportunity to simultaneously mitigate CO2 emission and adequately utilize C3H8 in shale gas. Owing to their thermodynamic resistance, converting CO2 and C3H8 respectively remains difficult. Here, we achieve 60.2% aromatics selectivity and 48.8% propane conversion over H-ZSM-5-25 via a zeolite-catalyzing the coupling of CO2 and C3H8. Operando dual-beam FTIR spectroscopy combined with 13C-labeled CO2 tracing experiments revealed that CO2 is directly involved in the generation of aromatics, with its carbon atoms selectively embedded into the aromatic ring, bypassing the reverse water-gas shift pathway. Accordingly, a cooperative aromatization mechanism is proposed. Thereinto, lactones, produced from CO2 and olefins, are proven to be the key intermediate. This work not only provides an opportunity for simultaneous conversion of CO2 and C3H8, but also expends coupling strategy designing of CO2 and alkanes over acidic zeolites.

Key words: CO2 utilization, Propane aromatization, Coupling effect, Acidic zeolites, Lactone