催化学报 ›› 2024, Vol. 65: 40-69.DOI: 10.1016/S1872-2067(24)60094-X
郑颖滨a,b,1, 张新宝a,1, 李俊杰a, 安杰a, 徐龙伢a, 李秀杰a,*(), 朱向学a,*(
)
收稿日期:
2024-06-03
接受日期:
2024-07-09
出版日期:
2024-10-18
发布日期:
2024-10-15
通讯作者:
*电子信箱: xiujieli@dicp.ac.cn (李秀杰),
zhuxx@dicp.ac.cn (朱向学).
作者简介:
1共同第一作者.
基金资助:
Yingbin Zhenga,b,1, Xinbao Zhanga,1, Junjie Lia, Jie Ana, Longya Xua, Xiujie Lia,*(), Xiangxue Zhua,*(
)
Received:
2024-06-03
Accepted:
2024-07-09
Online:
2024-10-18
Published:
2024-10-15
Contact:
*E-mail: xiujieli@dicp.ac.cn (X. Li), zhuxx@dicp.ac.cn (X. Zhu).
About author:
Xiujie Li, Professor at the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS). Prof. Li received her Ph.D. in Physical Chemistry from DICP, CAS in 2008 and has been working in the Division of Fossil Conversion and Applied Catalysis at DICP since then. Her research interests primarily focus on the synthesis and applications of zeolites for heterogeneous catalysis and VOCs removal, CO2-assisted oxidative dehydrogenation of light alkanes, and developing new routes for value-added olefin on basis of fossil energy and renewable energy. She has published more than 80 peer-reviewed papers.Supported by:
摘要:
低碳烯烃(C2-C4)是石油化工产业链中的重要原料, 其需求量随着全球经济的稳步增长而持续攀升. 近年来, 页岩气革命在全球范围内兴起, 促进了低碳烷烃脱氢技术的蓬勃发展, 使之成为低碳烯烃供给的关键路线之一. 同时, 全球CO2排放量与日俱增, 引发的温室效应等环境问题威胁着人类社会的健康发展. 为有效利用CO2中的碳氧资源, 研究者们将CO2引入低碳烷烃脱氢体系中, 一方面可有效避免直接脱氢反应中活性金属组分易烧结的问题; 另一方面, 可解决强氧化剂易深度氧化低碳烯烃引起的目标产品选择性低和副产大量COx的难题, 并减少反应体系易燃易爆的风险; 同时, 该过程还可副产CO, H2等基础化工原料, 对于优化能源结构和促进化学工业的可持续发展具有重要意义.
近年来, 用于CO2辅助低碳烷烃氧化脱氢反应的催化技术取得显著进展. 各类金属基催化剂因其独特性质展现出优异的催化性能, 但不同催化剂也面临着各自的挑战. 例如Pt基催化剂因高活性而受到广泛关注,但环境有害的氯化再生技术仍然是亟待解决的难题; Cr基催化剂因潜在的环境毒性问题而面临挑战. 此外, 氧化还原型金属 (如V, Fe等) 和主族金属 (如Ga, In等) 催化剂也展现出了良好的脱氢能力, 但其性能仍有待进一步提升. 通过调控催化剂的组成、结构或反应条件, 有望进一步提升这些催化剂的脱氢效率和选择性. 为进一步促进低碳烷烃和CO2资源的高值化利用, 并为高效催化剂的开发设计提供指导, 本文综述了各类金属基 (包括贵金属、过渡金属、金属氧化物以及高熵合金体系) 催化剂在CO2辅助低碳烷烃 (乙烷、丙烷、丁烷) 氧化脱氢反应中的最新研究成果, 旨在为相关领域的研究人员提供有益的参考和启示, 推动CO2辅助低碳烷烃氧化脱氢技术向更高效、更环保的方向发展. 聚焦于活性金属的种类和数量、活性位点的化学价态和配位环境、助剂的功能以及载体的效应, 本文系统归纳了CO2在低碳烷烃脱氢反应中的多重正面作用, 包括促进氢物种消耗、有效清除积碳、补充晶格氧以及稳定金属价态等. 同时, 深入探讨了引入CO2所伴随的负面效应, 如竞争吸附现象、反应能耗与产物分离成本的增加, 以及可能引发的重整反应等不利因素. 进一步地, 详细分析了不同活性位点在微观结构层面的特性以及它们在低碳烷烃与CO2活化中的协同作用机制. 详细讨论了催化剂的物化性质和催化性能之间的构-效关系以及提升催化性能的策略. 系统综述揭示, 当前研究面临的主要挑战在于高温条件下烷烃C-H键的选择性活化难题及催化剂因积碳而导致的失活问题. 为解决这些问题, 催化剂的研发工作应聚焦于开发能够协同活化C=O和C-H键的双功能或多功能复合催化材料.
展望未来, 实现多功能位点的精准控制, 结合活性位点动力学行为的原位解析技术, 同时确保催化剂的高效性、环保性以及转化路线的多元化发展, 将是推动非均相金属催化剂在CO2耦合轻质烷烃脱氢领域取得突破性进展的关键路径. 这一方向不仅为催化剂设计提供了新的思路, 也为实现低碳资源的高效、高值化利用奠定基础.
郑颖滨, 张新宝, 李俊杰, 安杰, 徐龙伢, 李秀杰, 朱向学. 负载型多相金属催化剂用于二氧化碳辅助低碳烷烃氧化脱氢反应[J]. 催化学报, 2024, 65: 40-69.
Yingbin Zheng, Xinbao Zhang, Junjie Li, Jie An, Longya Xu, Xiujie Li, Xiangxue Zhu. CO2-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts[J]. Chinese Journal of Catalysis, 2024, 65: 40-69.
Chemical equation | Reaction type | ||
---|---|---|---|
1-1 | C2H6 → C2H4 + H2 | 137 | DDH |
1-2 | C3H8 → C3H6 + H2 | 125 | |
1-3 | i-C4H10 → i-C4H8 + H2 | 138 | |
1-4 | n-C4H10 → n-C4H8 + H2 | 148 | |
1-5 | n-C4H10 → cis-2-C4H8 + H2 | 142 | |
1-6 | n-C4H10 → trans-2-C4H8 + H2 | 138 | |
1-7 | n-C4H10 → 1,3-C4H6 + 2H2 | 258 | |
1-8 | n-C4H8 → 1,3-C4H6 + H2 | 110 | |
2-1 | 2C2H6 + O2 → 2C2H4 + 2H2O | ‒209 | O2-ODH |
2-2 | 2C3H8 + O2 → 2C3H6 + 2H2O | ‒234 | |
2-3 | 2n-C4H10 + O2 → 2 n-C4H8 + 2H2O | ‒187 | |
2-4 | 2n-C4H8 + O2 → 2 1,3-C4H6 + 2H2O | ‒264 | |
3-1 | C2H6 + CO2 → C2H4 + CO + H2O | 178 | CO2-ODH |
3-2 | C3H8 + CO2 → C3H6 + CO + H2O | 166 | |
3-3 | n-C4H10 + CO2 → n-C4H8 + CO + H2O | 189 | |
3-4 | n-C4H10 + 2CO2 → 1,3-C4H6 + 2CO + 2H2O | 399 | |
4 | H2 + CO2 → CO + H2O | 41 | RWGS |
5 | C + CO2 → 2CO | 172 | Reverse Boudouard |
6-1 | C2H6 + 2CO2 → 4CO + 3H2 | 430 | Dry-reforming |
6-2 | C3H8 + 3CO2 → 6CO + 4H2 | 637 | |
6-3 | n-C4H10 + 4CO2 → 8CO + 5H2 | 838 |
Table 1 Reactions involved in alkanes dehydrogenation and corresponding changes in enthalpy energy (calculated by the HSC Chemistry 6.0 software).
Chemical equation | Reaction type | ||
---|---|---|---|
1-1 | C2H6 → C2H4 + H2 | 137 | DDH |
1-2 | C3H8 → C3H6 + H2 | 125 | |
1-3 | i-C4H10 → i-C4H8 + H2 | 138 | |
1-4 | n-C4H10 → n-C4H8 + H2 | 148 | |
1-5 | n-C4H10 → cis-2-C4H8 + H2 | 142 | |
1-6 | n-C4H10 → trans-2-C4H8 + H2 | 138 | |
1-7 | n-C4H10 → 1,3-C4H6 + 2H2 | 258 | |
1-8 | n-C4H8 → 1,3-C4H6 + H2 | 110 | |
2-1 | 2C2H6 + O2 → 2C2H4 + 2H2O | ‒209 | O2-ODH |
2-2 | 2C3H8 + O2 → 2C3H6 + 2H2O | ‒234 | |
2-3 | 2n-C4H10 + O2 → 2 n-C4H8 + 2H2O | ‒187 | |
2-4 | 2n-C4H8 + O2 → 2 1,3-C4H6 + 2H2O | ‒264 | |
3-1 | C2H6 + CO2 → C2H4 + CO + H2O | 178 | CO2-ODH |
3-2 | C3H8 + CO2 → C3H6 + CO + H2O | 166 | |
3-3 | n-C4H10 + CO2 → n-C4H8 + CO + H2O | 189 | |
3-4 | n-C4H10 + 2CO2 → 1,3-C4H6 + 2CO + 2H2O | 399 | |
4 | H2 + CO2 → CO + H2O | 41 | RWGS |
5 | C + CO2 → 2CO | 172 | Reverse Boudouard |
6-1 | C2H6 + 2CO2 → 4CO + 3H2 | 430 | Dry-reforming |
6-2 | C3H8 + 3CO2 → 6CO + 4H2 | 637 | |
6-3 | n-C4H10 + 4CO2 → 8CO + 5H2 | 838 |
Fig. 2. Equilibrium conversions of ethane (a) and propane (b) in direct dehydrogenation as a function of temperature under different pressures. (c) Equilibrium conversions of ethane in direct dehydrogenation of ethane (DDHE), CO2-oxidative dehydrogenation of ethane (CO2-ODHE) and dry-reforming of ethane (DRE) as a function of temperature. (d) Equilibrium conversion of propane in CO2-oxidative dehydrogenation of propane (CO2-ODHP) as a function of temperature under different CO2/C3H8 feeding ratios. Equilibrium reactant and product amounts as a function of temperature under CO2/C2H6 = 1 (e) and CO2/C3H8 = 1 (f) at 1 atm (calculated by the HSC Chemistry 6.0 software).
Fig. 4. (a?c) C2?C4 and CO2 conversion plot for various metal-based catalysts in CO2-ODH reactions (collected from Table 2?4). (d) The common elements used as active site and support for CO2-ODH reaction, respectively. (e) The types of metal-based catalysts for CO2-ODH reactions.
Fig. 5. Interfacial active sites (a) and general descriptors (b) for CO2-assisted selective C?H/C?C bond scission in ethane. Copyrights: (a) adopted with permission from Ref. [44]. Copyright 2020, Elsevier. (b) Adopted with permission from Ref. [48]. Copyright 2022, American Chemical Society.
Fig. 6. (a) The relationship of CO2-ODH activity with the metal species polymerization. The approaches for improving Cr species dispersion via support modifications: compositions (b); pore sizes (c); the locations (d) and numbers of silanol groups (e); confinement (f). Copyrights: (a) adopted with permission from Ref. [61]. Copyright 2020, Elsevier. (b) adopted with permission from Ref. [62]. Copyright 2019, Elsevier. (c) adopted with permission from Ref. [63]. Copyright 2021, Elsevier. (d) adopted with permission from Ref. [64]. Copyright 2017, Elsevier. (e) adopted with permission from Ref. [65]. Copyright 2016, Elsevier. (f) adopted with permission from Ref. [66]. Copyright 2019, Elsevier.
Fig. 7. The schematic diagram (a), in situ HAADF-STEM images (b), and quasi-in situ 57Fe Mo?ssbauer spectra (c) of Fe/3Mg7Al in different ethane dehydrogenation reaction periods. Adopted with permission from Ref. [82]. Copyright 2023, American Chemical Society.
Fig. 8. The possible reaction mechanism over the Co/S-1 catalyst under dehydrogenation reactions with different feeding CO2/C2H6 ratios. Adopted with permission from Ref. [97]. Copyright 2024, American Chemical Society.
Fig. 9. Various active sites of Co species for alkanes dehydrogenation, wherein the easily reductive large particles favor the scission of C?C bond. (a) Ultrasmall Co0 particle; (b) isolated tetrahedral Co2+ species; (c) unsaturated Co species; (d) CoO clusters. Copyrights: (a) was adopted with permission from Ref. [108]. Copyright 2020, Elsevier. (b) Adopted with permission from Ref. [101]. Copyright 2023, Elsevier. (c) Adopted with permission from Ref. [110]. Copyright 2024, American Chemical Society. (d) Adopted with permission from Ref. [99]. Copyright 2023, American Chemical Society.
Catalyst | Feed ratio (C2:CO2:inert gas) | Temp. (°C) | WHSV (L/g/h) | XC2 (%) | SC2 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
1.0% Pd(1:0)/CeO2 | 1:01:02 | 600 | 24 | 4.6 | 59.6 | 8.6 | [ |
1.0% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 6.1 | 86.4 | 7.1 | |
1.0% PdFe(1:9)/CeO2 | 1:01:02 | 600 | 24 | 6.6 | 85.8 | 8.3 | |
0.5% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 4.9 | 87.2 | 6.7 | |
0.1% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 3.2 | 93.1 | 3.7 | |
1.4% Fe(0:3)/CeO2 | 1:01:02 | 600 | 24 | 0.9 | 40 | 2.5 | |
1%PdCo3/CeO2 | 1:01:02 | 600 | 24 | 8.3 | 10.6 | 21.6 | [ |
1%PdIn3/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 89 | 4.5 | |
1%PdGa3/CeO2 | 1:01:02 | 600 | 24 | 0.4 | 95.5 | 0.8 | |
1%PdSn3/CeO2 | 1:01:02 | 600 | 24 | 2.8 | 88.9 | 2.9 | |
1%PdFe3/CeO2 | 1:01:02 | 600 | 24 | 4.9 | 81.7 | 5.7 | |
1%PdAg3/CeO2 | 1:01:02 | 600 | 24 | 3.6 | 65.5 | 5.6 | |
1%PdAu3/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 56.9 | 6.7 | |
1%PdCu3/CeO2 | 1:01:02 | 600 | 24 | 2.4 | 39.4 | 5.3 | |
1%PdNi3/CeO2 | 1:01:02 | 600 | 24 | 9.4 | 5.7 | 23.4 | |
1%PdPt3/CeO2 | 1:01:02 | 600 | 24 | 16.1 | 2.2 | 37.8 | |
1%PdRh3/CeO2 | 1:01:02 | 600 | 24 | 27.7 | 0.8 | 56.1 | |
1%PdRu3/CeO2 | 1:01:02 | 600 | 24 | 31.3 | 0.3 | 63.4 | |
1%PdIr3/CeO2 | 1:01:02 | 600 | 24 | 33.5 | 0.7 | 61.1 | |
Pd-Fe6/CeO2 | 1:02:03 | 650 | 18 | 9.9 | 80.4 | 9.3 | [ |
Pd-Co6/CeO2 | 1:02:03 | 650 | 18 | 24.9 | 4.4 | 34.2 | |
Pd-Ni9/CeO2 | 1:02:03 | 650 | 18 | 74.9 | 2 | 62.2 | |
Au/CeR | 0.136365741 | 650 | 9 | 16.9 | 97.6 | — | [ |
Au/Ce0.9Y0.1 | 0.136365741 | 650 | 9 | 20.9 | 99.5 | — | [ |
PtCe@MZ | 2:01:17 | 600 | 15 | 34 | 94 | 35* | [ |
1Pt@ZNS | 2:01:07 | 600 | 15 | 9.5 | 54 | 48* | [ |
1Pt-1La@ZNS | 2:01:07 | 600 | 15 | 37.2 | 78 | 68 | |
1Pt-1Y@ZNS | 2:01:07 | 600 | 15 | 38 | 83 | 22* | |
1Pt-1Sc@ZNS | 2:01:07 | 600 | 15 | 34.6 | 84 | 40* | |
GaPt MWFB 450 | 3:03:04 | 450 | 8.6 | 42* | 83* | 8* | [ |
Cr-10%/SiO2 | 1:02:01 | 650 | — | 30.5 | 98.6 | 21 | [ |
Fe-10%/SiO2 | 1:02:01 | 650 | — | 18.9 | 99 | 8.27 | |
Co-10%/SiO2 | 1:02:01 | 650 | — | 20.5 | 19.6 | 36.4 | |
Cr/SBA-15@4 | 1:01:00 | 650 | 7.2 | 18 | 76.3 | 9* | [ |
Cr/SBA-15@5 | 1:01:00 | 650 | 7.2 | 21.5 | 80.5 | 10* | |
Cr/SBA-15@7 | 1:01:00 | 650 | 7.2 | 25.8 | 81 | 14* | |
Cr/SBA-15@8 | 1:01:00 | 650 | 7.2 | 21.8 | 78.4 | 12* | |
Cr/ZSM-5-S-0.15 | 0.136365741 | 650 | 9 | 48.9 | 87.4 | — | [ |
8Cr-Cr-TEOS | 1:05:04 | 700 | 15 | 58 | 91* | — | [ |
Cr/Silicalite-1 | 0.136365741 | 650 | 9 | 40.2 | 93.8 | — | [ |
5 wt% CrOx/D-ERB-1 | 5:15:30 | 600 | 6 | 35.6 | 94.5 | - | [ |
0.5Cr/NaM | 0.136365741 | 650 | 9 | 5 | 95.7 | 2.5 | [ |
0.5Cr/NaM-d1 | 0.136365741 | 650 | 9 | 23 | 95 | 5.5 | |
0.5Cr/NaM-d2 | 0.136365741 | 650 | 9 | 23.9 | 94.8 | 6.1 | |
3Cr/NaM | 0.136365741 | 650 | 9 | 7.1 | 89.7 | 2.8 | |
3Cr/NaM-d1 | 0.136365741 | 650 | 9 | 36.1 | 88.9 | 9.8 | |
3Cr/NaM-d2 | 0.136365741 | 650 | 9 | 38.2 | 86.2 | 11.1 | |
8 wt% Cr/Al2O3 | 1:02:07 | 600 | 7.5 | 25* | 83* | 12* | [ |
8 wt% Cr/Al2O3 | 1:02:07 | 625 | 7.5 | 35* | 83* | 18* | |
8 wt% Cr/Al2O3 | 1:02:07 | 650 | 7.5 | 50* | 80* | 24* | |
8 wt% Cr/Al2O3 | 1:02:07 | 675 | 7.5 | 62* | 69* | 32* | |
Cr-TUD-1 | 1:05 | 650 | 24 | 37.5 | 92.5 | 6.8 | [ |
Cr/CZ | 1:01:03 | 700 | 6 | 31.7 | 52.6 | 33.7 | [ |
0.6KCr/CZ | 1:01:03 | 700 | 6 | 39.8 | 56.1 | 41.5 | |
1KCr/CZ | 1:01:03 | 700 | 6 | 43.1 | 68.6 | 42.8 | |
5KCr/CZ | 1:01:03 | 700 | 6 | 32 | 82.5 | 27.3 | |
10KCr/CZ | 1:01:03 | 700 | 6 | 28 | 79 | 25.7 | |
Cr2O3(5%)/HZSM-5-ZrO2(10%) | 1:05:04 | 700 | 6 | 64.6 | 87* | — | [ |
Cr/Ce-MCM-41(Si/Ce=25)-p | 1:05:04 | 700 | 9 | 64* | 97* | — | [ |
Cr/MgO(50)-CeO2(50) | 1:04:05 | 700 | 6000 h‒1 | 68.28 | 61.97 | — | [ |
5%Cr /ZSM-5 | 1:01:08 | 800 | 12 | 70* | 64* | 55* | [ |
5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 57* | 80* | 18* | |
5%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 71* | 64* | 65* | |
10%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 72* | 53* | 82* | |
15%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 70* | 65* | 70* | |
5%Cr-10%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 67* | 75* | 53* | |
5%Cr-15%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 62* | 75* | 54* | |
Fe/0Mg10Al | 1:01:08 | 650 | 6 | 12 | 96 | 9 | [ |
Fe/3Mg7Al | 1:01:08 | 650 | 6 | 21 | 84 | 20 | |
Fe/5Mg5Al | 1:01:08 | 650 | 6 | 14 | 87 | 16 | |
Fe/10Mg0Al | 1:01:08 | 650 | 6 | 9 | 73 | 14 | |
Fe/S1-EDA | 1:01:08 | 650 | 6 | 15 | 90 | 10 | |
Fe/SiO2 | 1:01:08 | 650 | 6 | 4 | 90 | 2 | |
Fe/S1 | 1:01:08 | 650 | 6 | 10 | 94 | 9 | |
Fe/commercial MgO | 1:01:08 | 650 | 6 | 7 | 73 | 13 | |
Fe/ZrO2 | 1:01:08 | 650 | 6 | 30 | 55 | 37 | |
1FeZr | 1:01:03 | 650 | 12 | 9 | 85 | 8 | [ |
3FeZr | 1:01:03 | 650 | 12 | 21 | 71 | 25 | |
5FeZr | 1:01:03 | 650 | 12 | 25 | 60 | 29 | |
10FeZr | 1:01:03 | 650 | 12 | 19 | 61 | 24 | |
5Fe-10Co/Al2O3 | 1:01:02 | 700 | 7.2 | 16 | 55 | — | [ |
Fe/NiMgZr | 01:01.2 | 600 | 1.4 | 30* | 68* | 33* | [ |
5Fe/10NiMgZr | 1:01 | 650 | 5.4 | 23.3 | 90 | 25.5 | [ |
Fe3Ni1/SiO2 | 1:01:02 | 600 | 24 | 0.4 | 75* | 0.9 | [ |
Fe3Ni1/ZrO2 | 1:01:02 | 600 | 24 | 2.6 | 61.7 | 5.6 | |
Fe3Ni1/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 82 | 6.9 | |
Fe0.75Ni0.25/CeO2 | 1:01:02 | 600 | 24 | 2.2 | 76.7 | 4.7 | |
Fe1.5Ni0.5/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 79.2 | 6.2 | |
Fe6Ni2/CeO2 | 1:01:02 | 600 | 24 | 3.4 | 67.4 | 8.7 | |
Fe12Ni4/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 31.9 | 13.1 | |
Ni1Fe3/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 77.5 | 5.9 | [ |
NiFe/CeO2-C1 | 1:01:02 | 600 | 24 | 4.6 | 83 | 6.2 | [ |
NiFe/CeO2-C2 | 1:01:02 | 600 | 24 | 3.9 | 47 | 8 | |
NiFe/CeO2-C3 | 1:01:02 | 600 | 24 | 2.6 | 40 | 7.9 | |
NiFe/CeO2-S | 1:01:02 | 600 | 24 | 1.9 | 48 | 5.5 | |
Fe1.5Ni0.5/ZrO2-T | 1:01:01 | 650 | 9 | 3.2 | 22.3 | 3.8 | [ |
Fe1.5Ni0.5/ZrO2-Mix | 1:01:01 | 650 | 9 | 9.9 | 68.9 | 15.3 | |
Fe1.5Ni0.5/ZrO2-M | 1:01:01 | 650 | 9 | 21.8 | 80.5 | 25.2 | |
FeNi@CNTs | 4:04:02 | 500 | 60 | 2.3 | 41.6 | — | [ |
1 wt% Co/S-1 | 1:01:03 | 650 | 12 | 20 | 84 | 8 | [ |
CoZ-IM | 0.130219907 | 650 | 9 | 74.6 | 3.6 | 81.8 | [ |
CoZ-IE | 0.130219907 | 650 | 9 | 26.5 | 96.7 | 4.3 | |
0.75Co/SiO2 | 1:02 | 700 | 6 | 46 | 85 | 12* | [ |
1%Co-HMS | 1:01:02 | 650 | 6 | 24.4 | 86.7 | — | [ |
1%Co-HMS (1 h) | 1:01:02 | 650 | 6 | 26 | 92.6 | — | [ |
CoZ5-C | 0.130219907 | 650 | 9 | 51.3 | 90.3 | — | [ |
Mo2C/SiO2-WI | 1:01:02 | 600 | 15 | 5.8 | 57* | 5* | [ |
Mo2C/SiO2-SG | 1:01:02 | 600 | 15 | 4.7 | 64* | 1* | |
Mo2C/SiO2-HNC | 1:01:02 | 600 | 15 | 2 | 60* | 4* | |
Mo/5CeTi | 0.212847222 | 600 | 15 | 15* | 72 | — | [ |
VOx/ZrO2(25)-MgO(75)-A | 1:05:04 | 700 | 600 s‒1 | 67.14 | 90* | — | [ |
V2O5/MgO-ZrO2(S1) | 1:04:05 | 700 | 6000 h‒1 | 79 | 61* | — | [ |
VOx/Mg-Zr-MCM-41 | 1:04:05 | 700 | 6000 h‒1 | 55* | 76* | — | [ |
Ga2O3 | 0.136365741 | 650 | 9 | 13 | 87.4 | 5.2 | [ |
MgGa2O4 | 0.136365741 | 650 | 9 | 35.2 | 81.8 | 8.3 | |
MgGa1.5Al0.5O4 | 0.136365741 | 650 | 9 | 44.3 | 87.1 | 6.1 | |
MgGa1Al1O4 | 0.136365741 | 650 | 9 | 42.7 | 91.7 | 9.3 | |
MgGa0.5Al1.5O4 | 0.136365741 | 650 | 9 | 21.2 | 99.6 | 4.1 | |
Ga/ZSM-5-S | 0.136365741 | 650 | 9 | 25.3 | 91.7 | — | [ |
Ga/meso-TiO2 | 1:05:04 | 550 | 4 | 12* | 73* | — | [ |
Ga/TiSi-3 | 0.136365741 | 650 | 9 | 31.6 | 86.6 | — | [ |
CoZ | 0.136365741 | 650 | 9 | 36 | 93.5 | 1.1 | [ |
Zn/HZ | 0.136365741 | 650 | 9 | 41.1 | 85.6 | 7.5 | |
Zn/CoZ | 0.136365741 | 650 | 9 | 49.4 | 84.9 | 7.8 | |
Zn8.35/NaS-U | 1:01:18 | 650 | 3.6 | 37.3 | 88.1 | 19.4 | [ |
Zn8.67/NaS-N | 1:01:18 | 650 | 3.6 | 65.9 | 59 | 36 | |
Zn9.18K0.74/NaS-N | 1:01:18 | 650 | 3.6 | 61.9 | 68.6 | 35.4 | |
Zn8.95K1.36/NaS-N | 1:01:18 | 650 | 3.6 | 56.5 | 78.9 | 30 | |
Zn8.80K1.96/NaS-N | 1:01:18 | 650 | 3.6 | 42.5 | 89.1 | 13.9 | |
Zn2.92/NaS50 | 1:01:18 | 550 | 3.6 | 68* | 94* | 58* | [ |
Zn2.92/NaS50 | 1:01:18 | 580 | 3.6 | 55* | 89* | 44* | |
Zn2.92/NaS50 | 1:01:18 | 600 | 3.6 | 44* | 84* | 31* | |
Zn2.92/NaS50 | 1:01:18 | 625 | 3.6 | 34* | 75* | 21* | |
Zn2.92/NaS50 | 1:01:18 | 650 | 3.6 | 23* | 64* | 12* | |
5%Zn-ZSM-5(11.5) | 1:05 | 500 | 3.2 | 16.4 | 47.8 | 1.4 | [ |
5%Zn-ZSM-5(25) | 1:05 | 500 | 3.2 | 10.5 | 59.3 | 0.6 | |
5%Zn-silicalite-1 | 1:05 | 500 | 3.2 | 1.8 | 61 | 0.13 | |
Si0.1CeO2 | 2:02:06 | 700 | 6 | 41.4 | 64.9 | 46.2 | [ |
CeO2 | 2:02:06 | 700 | 6 | 39 | 24 | 45.4 | |
3CT1Z1 | 1:02:17 | 650 | 9 | 33.8 | 73* | 18 | [ |
Table 2 Summary of the catalytic performance of various metal-based catalysts used in CO2-ODHE reactions.
Catalyst | Feed ratio (C2:CO2:inert gas) | Temp. (°C) | WHSV (L/g/h) | XC2 (%) | SC2 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
1.0% Pd(1:0)/CeO2 | 1:01:02 | 600 | 24 | 4.6 | 59.6 | 8.6 | [ |
1.0% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 6.1 | 86.4 | 7.1 | |
1.0% PdFe(1:9)/CeO2 | 1:01:02 | 600 | 24 | 6.6 | 85.8 | 8.3 | |
0.5% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 4.9 | 87.2 | 6.7 | |
0.1% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 3.2 | 93.1 | 3.7 | |
1.4% Fe(0:3)/CeO2 | 1:01:02 | 600 | 24 | 0.9 | 40 | 2.5 | |
1%PdCo3/CeO2 | 1:01:02 | 600 | 24 | 8.3 | 10.6 | 21.6 | [ |
1%PdIn3/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 89 | 4.5 | |
1%PdGa3/CeO2 | 1:01:02 | 600 | 24 | 0.4 | 95.5 | 0.8 | |
1%PdSn3/CeO2 | 1:01:02 | 600 | 24 | 2.8 | 88.9 | 2.9 | |
1%PdFe3/CeO2 | 1:01:02 | 600 | 24 | 4.9 | 81.7 | 5.7 | |
1%PdAg3/CeO2 | 1:01:02 | 600 | 24 | 3.6 | 65.5 | 5.6 | |
1%PdAu3/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 56.9 | 6.7 | |
1%PdCu3/CeO2 | 1:01:02 | 600 | 24 | 2.4 | 39.4 | 5.3 | |
1%PdNi3/CeO2 | 1:01:02 | 600 | 24 | 9.4 | 5.7 | 23.4 | |
1%PdPt3/CeO2 | 1:01:02 | 600 | 24 | 16.1 | 2.2 | 37.8 | |
1%PdRh3/CeO2 | 1:01:02 | 600 | 24 | 27.7 | 0.8 | 56.1 | |
1%PdRu3/CeO2 | 1:01:02 | 600 | 24 | 31.3 | 0.3 | 63.4 | |
1%PdIr3/CeO2 | 1:01:02 | 600 | 24 | 33.5 | 0.7 | 61.1 | |
Pd-Fe6/CeO2 | 1:02:03 | 650 | 18 | 9.9 | 80.4 | 9.3 | [ |
Pd-Co6/CeO2 | 1:02:03 | 650 | 18 | 24.9 | 4.4 | 34.2 | |
Pd-Ni9/CeO2 | 1:02:03 | 650 | 18 | 74.9 | 2 | 62.2 | |
Au/CeR | 0.136365741 | 650 | 9 | 16.9 | 97.6 | — | [ |
Au/Ce0.9Y0.1 | 0.136365741 | 650 | 9 | 20.9 | 99.5 | — | [ |
PtCe@MZ | 2:01:17 | 600 | 15 | 34 | 94 | 35* | [ |
1Pt@ZNS | 2:01:07 | 600 | 15 | 9.5 | 54 | 48* | [ |
1Pt-1La@ZNS | 2:01:07 | 600 | 15 | 37.2 | 78 | 68 | |
1Pt-1Y@ZNS | 2:01:07 | 600 | 15 | 38 | 83 | 22* | |
1Pt-1Sc@ZNS | 2:01:07 | 600 | 15 | 34.6 | 84 | 40* | |
GaPt MWFB 450 | 3:03:04 | 450 | 8.6 | 42* | 83* | 8* | [ |
Cr-10%/SiO2 | 1:02:01 | 650 | — | 30.5 | 98.6 | 21 | [ |
Fe-10%/SiO2 | 1:02:01 | 650 | — | 18.9 | 99 | 8.27 | |
Co-10%/SiO2 | 1:02:01 | 650 | — | 20.5 | 19.6 | 36.4 | |
Cr/SBA-15@4 | 1:01:00 | 650 | 7.2 | 18 | 76.3 | 9* | [ |
Cr/SBA-15@5 | 1:01:00 | 650 | 7.2 | 21.5 | 80.5 | 10* | |
Cr/SBA-15@7 | 1:01:00 | 650 | 7.2 | 25.8 | 81 | 14* | |
Cr/SBA-15@8 | 1:01:00 | 650 | 7.2 | 21.8 | 78.4 | 12* | |
Cr/ZSM-5-S-0.15 | 0.136365741 | 650 | 9 | 48.9 | 87.4 | — | [ |
8Cr-Cr-TEOS | 1:05:04 | 700 | 15 | 58 | 91* | — | [ |
Cr/Silicalite-1 | 0.136365741 | 650 | 9 | 40.2 | 93.8 | — | [ |
5 wt% CrOx/D-ERB-1 | 5:15:30 | 600 | 6 | 35.6 | 94.5 | - | [ |
0.5Cr/NaM | 0.136365741 | 650 | 9 | 5 | 95.7 | 2.5 | [ |
0.5Cr/NaM-d1 | 0.136365741 | 650 | 9 | 23 | 95 | 5.5 | |
0.5Cr/NaM-d2 | 0.136365741 | 650 | 9 | 23.9 | 94.8 | 6.1 | |
3Cr/NaM | 0.136365741 | 650 | 9 | 7.1 | 89.7 | 2.8 | |
3Cr/NaM-d1 | 0.136365741 | 650 | 9 | 36.1 | 88.9 | 9.8 | |
3Cr/NaM-d2 | 0.136365741 | 650 | 9 | 38.2 | 86.2 | 11.1 | |
8 wt% Cr/Al2O3 | 1:02:07 | 600 | 7.5 | 25* | 83* | 12* | [ |
8 wt% Cr/Al2O3 | 1:02:07 | 625 | 7.5 | 35* | 83* | 18* | |
8 wt% Cr/Al2O3 | 1:02:07 | 650 | 7.5 | 50* | 80* | 24* | |
8 wt% Cr/Al2O3 | 1:02:07 | 675 | 7.5 | 62* | 69* | 32* | |
Cr-TUD-1 | 1:05 | 650 | 24 | 37.5 | 92.5 | 6.8 | [ |
Cr/CZ | 1:01:03 | 700 | 6 | 31.7 | 52.6 | 33.7 | [ |
0.6KCr/CZ | 1:01:03 | 700 | 6 | 39.8 | 56.1 | 41.5 | |
1KCr/CZ | 1:01:03 | 700 | 6 | 43.1 | 68.6 | 42.8 | |
5KCr/CZ | 1:01:03 | 700 | 6 | 32 | 82.5 | 27.3 | |
10KCr/CZ | 1:01:03 | 700 | 6 | 28 | 79 | 25.7 | |
Cr2O3(5%)/HZSM-5-ZrO2(10%) | 1:05:04 | 700 | 6 | 64.6 | 87* | — | [ |
Cr/Ce-MCM-41(Si/Ce=25)-p | 1:05:04 | 700 | 9 | 64* | 97* | — | [ |
Cr/MgO(50)-CeO2(50) | 1:04:05 | 700 | 6000 h‒1 | 68.28 | 61.97 | — | [ |
5%Cr /ZSM-5 | 1:01:08 | 800 | 12 | 70* | 64* | 55* | [ |
5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 57* | 80* | 18* | |
5%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 71* | 64* | 65* | |
10%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 72* | 53* | 82* | |
15%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 70* | 65* | 70* | |
5%Cr-10%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 67* | 75* | 53* | |
5%Cr-15%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 62* | 75* | 54* | |
Fe/0Mg10Al | 1:01:08 | 650 | 6 | 12 | 96 | 9 | [ |
Fe/3Mg7Al | 1:01:08 | 650 | 6 | 21 | 84 | 20 | |
Fe/5Mg5Al | 1:01:08 | 650 | 6 | 14 | 87 | 16 | |
Fe/10Mg0Al | 1:01:08 | 650 | 6 | 9 | 73 | 14 | |
Fe/S1-EDA | 1:01:08 | 650 | 6 | 15 | 90 | 10 | |
Fe/SiO2 | 1:01:08 | 650 | 6 | 4 | 90 | 2 | |
Fe/S1 | 1:01:08 | 650 | 6 | 10 | 94 | 9 | |
Fe/commercial MgO | 1:01:08 | 650 | 6 | 7 | 73 | 13 | |
Fe/ZrO2 | 1:01:08 | 650 | 6 | 30 | 55 | 37 | |
1FeZr | 1:01:03 | 650 | 12 | 9 | 85 | 8 | [ |
3FeZr | 1:01:03 | 650 | 12 | 21 | 71 | 25 | |
5FeZr | 1:01:03 | 650 | 12 | 25 | 60 | 29 | |
10FeZr | 1:01:03 | 650 | 12 | 19 | 61 | 24 | |
5Fe-10Co/Al2O3 | 1:01:02 | 700 | 7.2 | 16 | 55 | — | [ |
Fe/NiMgZr | 01:01.2 | 600 | 1.4 | 30* | 68* | 33* | [ |
5Fe/10NiMgZr | 1:01 | 650 | 5.4 | 23.3 | 90 | 25.5 | [ |
Fe3Ni1/SiO2 | 1:01:02 | 600 | 24 | 0.4 | 75* | 0.9 | [ |
Fe3Ni1/ZrO2 | 1:01:02 | 600 | 24 | 2.6 | 61.7 | 5.6 | |
Fe3Ni1/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 82 | 6.9 | |
Fe0.75Ni0.25/CeO2 | 1:01:02 | 600 | 24 | 2.2 | 76.7 | 4.7 | |
Fe1.5Ni0.5/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 79.2 | 6.2 | |
Fe6Ni2/CeO2 | 1:01:02 | 600 | 24 | 3.4 | 67.4 | 8.7 | |
Fe12Ni4/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 31.9 | 13.1 | |
Ni1Fe3/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 77.5 | 5.9 | [ |
NiFe/CeO2-C1 | 1:01:02 | 600 | 24 | 4.6 | 83 | 6.2 | [ |
NiFe/CeO2-C2 | 1:01:02 | 600 | 24 | 3.9 | 47 | 8 | |
NiFe/CeO2-C3 | 1:01:02 | 600 | 24 | 2.6 | 40 | 7.9 | |
NiFe/CeO2-S | 1:01:02 | 600 | 24 | 1.9 | 48 | 5.5 | |
Fe1.5Ni0.5/ZrO2-T | 1:01:01 | 650 | 9 | 3.2 | 22.3 | 3.8 | [ |
Fe1.5Ni0.5/ZrO2-Mix | 1:01:01 | 650 | 9 | 9.9 | 68.9 | 15.3 | |
Fe1.5Ni0.5/ZrO2-M | 1:01:01 | 650 | 9 | 21.8 | 80.5 | 25.2 | |
FeNi@CNTs | 4:04:02 | 500 | 60 | 2.3 | 41.6 | — | [ |
1 wt% Co/S-1 | 1:01:03 | 650 | 12 | 20 | 84 | 8 | [ |
CoZ-IM | 0.130219907 | 650 | 9 | 74.6 | 3.6 | 81.8 | [ |
CoZ-IE | 0.130219907 | 650 | 9 | 26.5 | 96.7 | 4.3 | |
0.75Co/SiO2 | 1:02 | 700 | 6 | 46 | 85 | 12* | [ |
1%Co-HMS | 1:01:02 | 650 | 6 | 24.4 | 86.7 | — | [ |
1%Co-HMS (1 h) | 1:01:02 | 650 | 6 | 26 | 92.6 | — | [ |
CoZ5-C | 0.130219907 | 650 | 9 | 51.3 | 90.3 | — | [ |
Mo2C/SiO2-WI | 1:01:02 | 600 | 15 | 5.8 | 57* | 5* | [ |
Mo2C/SiO2-SG | 1:01:02 | 600 | 15 | 4.7 | 64* | 1* | |
Mo2C/SiO2-HNC | 1:01:02 | 600 | 15 | 2 | 60* | 4* | |
Mo/5CeTi | 0.212847222 | 600 | 15 | 15* | 72 | — | [ |
VOx/ZrO2(25)-MgO(75)-A | 1:05:04 | 700 | 600 s‒1 | 67.14 | 90* | — | [ |
V2O5/MgO-ZrO2(S1) | 1:04:05 | 700 | 6000 h‒1 | 79 | 61* | — | [ |
VOx/Mg-Zr-MCM-41 | 1:04:05 | 700 | 6000 h‒1 | 55* | 76* | — | [ |
Ga2O3 | 0.136365741 | 650 | 9 | 13 | 87.4 | 5.2 | [ |
MgGa2O4 | 0.136365741 | 650 | 9 | 35.2 | 81.8 | 8.3 | |
MgGa1.5Al0.5O4 | 0.136365741 | 650 | 9 | 44.3 | 87.1 | 6.1 | |
MgGa1Al1O4 | 0.136365741 | 650 | 9 | 42.7 | 91.7 | 9.3 | |
MgGa0.5Al1.5O4 | 0.136365741 | 650 | 9 | 21.2 | 99.6 | 4.1 | |
Ga/ZSM-5-S | 0.136365741 | 650 | 9 | 25.3 | 91.7 | — | [ |
Ga/meso-TiO2 | 1:05:04 | 550 | 4 | 12* | 73* | — | [ |
Ga/TiSi-3 | 0.136365741 | 650 | 9 | 31.6 | 86.6 | — | [ |
CoZ | 0.136365741 | 650 | 9 | 36 | 93.5 | 1.1 | [ |
Zn/HZ | 0.136365741 | 650 | 9 | 41.1 | 85.6 | 7.5 | |
Zn/CoZ | 0.136365741 | 650 | 9 | 49.4 | 84.9 | 7.8 | |
Zn8.35/NaS-U | 1:01:18 | 650 | 3.6 | 37.3 | 88.1 | 19.4 | [ |
Zn8.67/NaS-N | 1:01:18 | 650 | 3.6 | 65.9 | 59 | 36 | |
Zn9.18K0.74/NaS-N | 1:01:18 | 650 | 3.6 | 61.9 | 68.6 | 35.4 | |
Zn8.95K1.36/NaS-N | 1:01:18 | 650 | 3.6 | 56.5 | 78.9 | 30 | |
Zn8.80K1.96/NaS-N | 1:01:18 | 650 | 3.6 | 42.5 | 89.1 | 13.9 | |
Zn2.92/NaS50 | 1:01:18 | 550 | 3.6 | 68* | 94* | 58* | [ |
Zn2.92/NaS50 | 1:01:18 | 580 | 3.6 | 55* | 89* | 44* | |
Zn2.92/NaS50 | 1:01:18 | 600 | 3.6 | 44* | 84* | 31* | |
Zn2.92/NaS50 | 1:01:18 | 625 | 3.6 | 34* | 75* | 21* | |
Zn2.92/NaS50 | 1:01:18 | 650 | 3.6 | 23* | 64* | 12* | |
5%Zn-ZSM-5(11.5) | 1:05 | 500 | 3.2 | 16.4 | 47.8 | 1.4 | [ |
5%Zn-ZSM-5(25) | 1:05 | 500 | 3.2 | 10.5 | 59.3 | 0.6 | |
5%Zn-silicalite-1 | 1:05 | 500 | 3.2 | 1.8 | 61 | 0.13 | |
Si0.1CeO2 | 2:02:06 | 700 | 6 | 41.4 | 64.9 | 46.2 | [ |
CeO2 | 2:02:06 | 700 | 6 | 39 | 24 | 45.4 | |
3CT1Z1 | 1:02:17 | 650 | 9 | 33.8 | 73* | 18 | [ |
Fig. 10. The schematic model of propane and CO2 activated on the finned NPs@Zn-MFI zeolite catalysts. Adopted with permission from Ref. [155]. Copyright 2023, Elsevier.
Fig. 11. The XPS spectra of Cr 2p in fresh and spent catalysts: 5%Cr/ZrO2 (a) and 5%Cr/Ce0.2Zr0.8O2 (b) catalysts. Adopted with permission from Ref. [175]. Copyright 2023, American Chemical Society.
Fig. 12. Defect-dependent selective C?H/C?C bond cleavage of propane in the presence of CO2 over FeNi/Ceria catalysts. Adopted with permission from Ref. [183]. Copyright 2021, American Chemical Society.
Fig. 13. Understanding the role of Fe doping in tuning the size and dispersion of GaN nanocrystallites for CO2-assisted oxidative dehydrogenation of propane. Adopted with permission from Ref. [200]. Copyright 2022, American Chemical Society.
Fig. 14. Effects of support and CO2 on the performances of vanadium oxide-based catalysts in propane dehydrogenation. Adopted with permission from Ref. [210]. Copyright 2022, American Chemical Society.
Catalyst | Feed ratio (C3:CO2:inert gas) | Temp. (°C) | WHSV (L g‒1 h‒1) | XC3 (%) | SC3 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
5%Pd/CeZrAlOx | 37:37:26 | 500 | 6000 h‒1 | 9.5 | 93 | — | [ |
Pd1 | 1:01:02 | 550 | 24 | 0.4 | 44.4 | 3.2 | [ |
Fe3Pd1 | 1:01:02 | 550 | 24 | 0.4 | 57.6 | 0.1 | |
Co3Pd1 | 1:01:02 | 550 | 24 | 2.8 | 25.2 | 8.4 | |
Ni3Pd1 | 1:01:02 | 550 | 24 | 5.3 | 11.2 | 17.6 | |
Pt1 | 1:01:02 | 550 | 24 | 1.6 | 21.4 | 4 | |
Fe3Pt1 | 1:01:02 | 550 | 24 | 1.1 | 32 | 2.6 | |
Co3Pt1 | 1:01:02 | 550 | 24 | 5.6 | 10.1 | 20.3 | |
dCo3Pt1 | 1:01:02 | 550 | 24 | 3.4 | 27.3 | 9.5 | |
Ni3Pt1 | 1:01:02 | 550 | 24 | 11.6 | 2.8 | 39.4 | |
Fe1Co3 | 1:01:02 | 550 | 24 | 0.9 | 43.8 | 1.5 | |
Fe3Co1 | 1:01:02 | 550 | 24 | 0.27 | 57.1 | 0.23 | |
Fe3Ni1 | 1:01:02 | 550 | 24 | 2.7 | 58.2 | 4 | |
Fe1Ni3 | 1:01:02 | 550 | 24 | 7.4 | 2.9 | 26.9 | |
Fe3Ni3 | 1:01:02 | 550 | 24 | 5 | 20.4 | 16.1 | |
Fe9Ni3 | 1:01:02 | 550 | 24 | 3.4 | 22.5 | 10.9 | |
1Pt5Sn/CeO2 | 4:20:01 | 500 | 6 | 21* | 79* | — | [ |
0.1 wt% Pt/1.0 wt% Sn-CeO2 | 2.4:4.8:10 | 550 | 1 | 15.1 | 63.9 | 22* | [ |
Pt1Fe7/S-1 | 5:05:30 | 550 | 16 | 25* | 95* | 14* | [ |
1Pt-1Zn/SiNS | 1:01 | 600 | 2.4 | 46.7 | 80 | — | [ |
0.25%Rh0.50%Pt@Zn-MFI | 6:06:18 | 600 | 3.6 | 48* | 60* | 23* | [ |
Pt1Co1-SiBeta | 1:01:03 | 550 | 12 | 51.8 | 91.8 | 30.6 | [ |
Pt2-SiBeta | 1:01:03 | 550 | 12 | 3.6 | 85.1 | 0.4 | |
Pt1.5Co0.5-SiBeta | 1:01:03 | 550 | 12 | 21.8 | 86.3 | 6.3 | |
Pt0.5Co1.5-SiBeta | 1:01:03 | 550 | 12 | 23.5 | 73.8 | 22.9 | |
Co2-SiBeta | 1:01:03 | 550 | 12 | 26.4 | 93.1 | 14.8 | |
Pt-Co-In/CeO2 | 1:01:02 | 550 | 12 | 52 | 95 | 57 | [ |
HEI/CeO2 | 1:01:02 | 600 | 12 | 30 | 94 | 53 | [ |
Ru1Cr10Ox/SiO2 | 1:01:01 | 496 | 12 | 9 | 85 | 5* | [ |
7Cr/SiO2-5 | 1:02 | 650 | 3.6 | 80 | 20 | — | [ |
CrOx/silicalite-1-0.15 | 4:20:01 | 550 | 3 | 36* | 86* | 4* | [ |
Cr/GNFp | 1:02 | 600 | 3.6 | 21 | 56.2 | — | [ |
Cr0.5SiBeta | 1:05:09 | 550 | 9 | 11 | 94.7 | 0.6 | [ |
Cr1.0SiBeta | 1:05:09 | 550 | 9 | 17.6 | 90.8 | 1.2 | |
Cr2.0SiBeta | 1:05:09 | 550 | 9 | 24.8 | 87.1 | 4 | |
Cr5.0SiBeta | 1:05:09 | 550 | 9 | 27.6 | 84.4 | 5.5 | |
Cr7.0SiBeta | 1:05:09 | 550 | 9 | 33.3 | 81.6 | 7 | |
Cr2.0AlBeta | 1:05:09 | 550 | 9 | 4.5 | 45.1 | 0.8 | |
ALD-Cr 0.72% | 1:05:14 | 600 | 4.5 | 34* | 88* | — | [ |
7% Cr-TUD-1 | 10.5:2.55 | 550 | 1020 h‒1 | 45 | 75 | — | [ |
Cr/MSS-1 | 2:08:08 | 600 | 5.4 | 30* | 88* | 4.7 | [ |
Cr/MSS-2 | 2:08:08 | 600 | 5.4 | 32* | 89* | 5.3 | |
Cr/MSS-3 | 2:08:08 | 600 | 5.4 | 29* | 88* | 4.3 | |
Cr/MSS-4 | 2:08:08 | 600 | 5.4 | 27* | 88* | 2.6 | |
5СrOy/Сe0.5Zr0.5O2/SiO2_wet | 1:02 | 675 | 3.6 | 38 | 77 | — | [ |
1Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 3.6 | 87.9 | 1.5 | [ |
2Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 20.2 | 93.5 | 4.1 | |
3Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 12.1 | 90.1 | 3.3 | |
2Cr-ZrO2 | 1:03:06 | 550 | 5 | 17 | 88.2 | 6 | |
2Cr/10Fe-CeO2 | 0.212847222 | 510 | 60 | 2.9* | 80* | — | [ |
7Cr-ZrO2 | 1:02:37 | 550 | 6 | 68 | 60* | 37* | [ |
c-2.5CZ | 2.5:6.5:91 | 550 | 6 | 26 | 69* | 13 | [ |
m-2.5CZ | 2.5:6.5:91 | 550 | 6 | 42 | 60* | 23 | |
c-5CZ | 2.5:6.5:91 | 550 | 6 | 41 | 63* | 24 | |
m-5CZ | 2.5:6.5:91 | 550 | 6 | 58 | 52* | 42 | |
c-10CZ | 2.5:6.5:91 | 550 | 6 | 38 | 68* | 17 | |
m-10CZ | 2.5:6.5:91 | 550 | 6 | 36 | 59* | 21 | |
c-15CZ | 2.5:6.5:91 | 550 | 6 | 59 | 58* | 33 | |
m-15CZ | 2.5:6.5:91 | 550 | 6 | 58 | 59* | 35 | |
5Cr/ZrO2 | 1:02:37 | 600 | 6 | 79.8 | 57.6 | 42.7 | [ |
5Cr/Ce0.1Zr0.9O2 | 1:02:37 | 600 | 6 | 75 | 66.7 | 41.6 | |
5Cr/Ce0.2Zr0.8O2 | 1:02:37 | 600 | 6 | 62.6 | 79.4 | 31.2 | |
5Cr/Ce0.3Zr0.7O2 | 1:02:37 | 600 | 6 | 57.9 | 82.4 | 33.8 | |
5Cr/Ce0.5Zr0.5O2 | 1:02:37 | 600 | 6 | 9.7 | 92.9 | 7.9 | |
5Cr/CeO2 | 1:02:37 | 600 | 6 | 20.8 | 79.8 | 11.9 | |
5 wt% Cr/Al2O3 | 0.085833333 | 600 | 60 | 13.6 | 90 | — | [ |
12 Fe2O3/ZrO2 | 1:02:37 | 600 | 6 | 32 | 73 | — | [ |
Fe2O3-19ZrO2 | 01:01.5 | 550 | 1.8 | 10.2 | 89.2 | 7.35 | [ |
Fe2O3-9ZrO2 | 01:01.5 | 550 | 1.8 | 17.6 | 87.8 | 12.5 | |
Fe2O3-4ZrO2 | 01:01.5 | 550 | 1.8 | 38.7 | 85.7 | 27.5 | |
Fe2O3-3ZrO2 | 01:01.5 | 550 | 1.8 | 39.9 | 83.7 | 28.2 | |
Fe2O3-2ZrO2 | 01:01.5 | 550 | 1.8 | 40.8 | 85.1 | 30.8 | |
Fe2O3-1ZrO2 | 01:01.5 | 550 | 1.8 | 36.3 | 88.5 | 25.7 | |
Fe2O3 | 01:01.5 | 550 | 1.8 | 29.3 | 90.5 | 24.2 | |
FeCr50 | 37:37:26 | 550 | 4.5 | 14.2 | 71 | — | [ |
Fe0.67Ce0.5O2 | 2:02:06 | 700 | 6 | 42.2 | 37.4 | 51.3 | [ |
15FeCeO2 | 0.212847222 | 550 | 6 | 21.5 | 45* | 28* | [ |
FeNi/Ceria-Vo-R | 2.4:4.8:10 | 550 | 1 | 25.2 | 49 | — | [ |
ZnFe2Ox/S-1 | 1:01:04 | 580 | 7.2 | 38* | 97* | 19* | [ |
2V-Fe/KIT-6 | 1:04:05 | 580 | 6 | 37.8 | 87 | 18.5 | [ |
5Fe-5V-Al2O3 | 0.636226852 | 600 | 7.5 | 41.3 | 84.4 | 31* | [ |
7 Ga/SiO2(A) | 1:02 | 600 | 1.8 | 33 | 84 | — | [ |
5% Ga/HZSM-5 | 1:01:08 | 600 | 90 | 25* | 50* | — | [ |
8Ga2O3/SiO2 | 2.5:2.5:60 | 600 | 3.9 | 37* | 93* | — | [ |
ALD-3C (2.9%Ga) | 0.22650463 | 600 | 4.5 | 38 | 82 | — | [ |
Ga4.0SiBEA | 2.5:15:82.5 | 600 | 9 | 57.5 | 64 | — | [ |
5-GaN/Q-3 | 1:02:07 | 600 | 9 | 31 | 93 | — | [ |
5GaN/NaZSM-5(470) | 1:02:07 | 600 | 9 | 45 | 63* | — | [ |
5GaN/KIT-6 | 1:02:07 | 600 | 9 | 24* | 95* | 5* | [ |
5GaN/2000-Fe-silicalite-1 | 1.5:3:25.5 | 600 | 9 | 45* | 78* | 6* | [ |
V-La-MSNS | 1:02:07 | 550 | 6 | 37* | 79* | — | [ |
0.5Cu-10VOx/S-1 | 01:01.5 | 600 | 1.8 | 36 | 90 | 22 | [ |
AlVO7B | 1:01 | 650 | 18 | 62* | 55* | 22* | [ |
20 CeVO4/AC | 1:01:01 | 550 | 6 | 8.5 | 57 | — | [ |
3.4V/In | 2.5:2.5:95 | 540 | 18 | 4.2* | 67* | — | [ |
3.4V/In-S | 2.5:2.5:95 | 540 | 18 | 6.5* | 65* | — | [ |
5.2V-MSNSs | 1:04:04 | 600 | 4.5 | 58* | 83* | — | [ |
6.8V-MCM-41 | 1:04:04 | 600 | 4.5 | 57* | 90* | — | [ |
VOx/SiO2 | 1:01:06 | 600 | 16 | 5.8* | 99* | — | [ |
Co/S-1-HTS | 2.5:2.5:95 | 550 | 24 | 60* | 98* | — | [ |
20%ZnO-ZrO2 | 4:20:01 | 550 | 6 | 18* | 76* | — | [ |
Zn/Mo-Zr-10 | 1:02 | 550 | 7.2 h‒1 | 29.5 | 80 | 12 | [ |
12% In/HZSM-5 | 1:04 | 580 | 6 | 13.3 | 78.9 | 6.34 | [ |
Table 3 Summary of the catalytic performance of various metal-based catalysts used in CO2-ODHP.
Catalyst | Feed ratio (C3:CO2:inert gas) | Temp. (°C) | WHSV (L g‒1 h‒1) | XC3 (%) | SC3 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
5%Pd/CeZrAlOx | 37:37:26 | 500 | 6000 h‒1 | 9.5 | 93 | — | [ |
Pd1 | 1:01:02 | 550 | 24 | 0.4 | 44.4 | 3.2 | [ |
Fe3Pd1 | 1:01:02 | 550 | 24 | 0.4 | 57.6 | 0.1 | |
Co3Pd1 | 1:01:02 | 550 | 24 | 2.8 | 25.2 | 8.4 | |
Ni3Pd1 | 1:01:02 | 550 | 24 | 5.3 | 11.2 | 17.6 | |
Pt1 | 1:01:02 | 550 | 24 | 1.6 | 21.4 | 4 | |
Fe3Pt1 | 1:01:02 | 550 | 24 | 1.1 | 32 | 2.6 | |
Co3Pt1 | 1:01:02 | 550 | 24 | 5.6 | 10.1 | 20.3 | |
dCo3Pt1 | 1:01:02 | 550 | 24 | 3.4 | 27.3 | 9.5 | |
Ni3Pt1 | 1:01:02 | 550 | 24 | 11.6 | 2.8 | 39.4 | |
Fe1Co3 | 1:01:02 | 550 | 24 | 0.9 | 43.8 | 1.5 | |
Fe3Co1 | 1:01:02 | 550 | 24 | 0.27 | 57.1 | 0.23 | |
Fe3Ni1 | 1:01:02 | 550 | 24 | 2.7 | 58.2 | 4 | |
Fe1Ni3 | 1:01:02 | 550 | 24 | 7.4 | 2.9 | 26.9 | |
Fe3Ni3 | 1:01:02 | 550 | 24 | 5 | 20.4 | 16.1 | |
Fe9Ni3 | 1:01:02 | 550 | 24 | 3.4 | 22.5 | 10.9 | |
1Pt5Sn/CeO2 | 4:20:01 | 500 | 6 | 21* | 79* | — | [ |
0.1 wt% Pt/1.0 wt% Sn-CeO2 | 2.4:4.8:10 | 550 | 1 | 15.1 | 63.9 | 22* | [ |
Pt1Fe7/S-1 | 5:05:30 | 550 | 16 | 25* | 95* | 14* | [ |
1Pt-1Zn/SiNS | 1:01 | 600 | 2.4 | 46.7 | 80 | — | [ |
0.25%Rh0.50%Pt@Zn-MFI | 6:06:18 | 600 | 3.6 | 48* | 60* | 23* | [ |
Pt1Co1-SiBeta | 1:01:03 | 550 | 12 | 51.8 | 91.8 | 30.6 | [ |
Pt2-SiBeta | 1:01:03 | 550 | 12 | 3.6 | 85.1 | 0.4 | |
Pt1.5Co0.5-SiBeta | 1:01:03 | 550 | 12 | 21.8 | 86.3 | 6.3 | |
Pt0.5Co1.5-SiBeta | 1:01:03 | 550 | 12 | 23.5 | 73.8 | 22.9 | |
Co2-SiBeta | 1:01:03 | 550 | 12 | 26.4 | 93.1 | 14.8 | |
Pt-Co-In/CeO2 | 1:01:02 | 550 | 12 | 52 | 95 | 57 | [ |
HEI/CeO2 | 1:01:02 | 600 | 12 | 30 | 94 | 53 | [ |
Ru1Cr10Ox/SiO2 | 1:01:01 | 496 | 12 | 9 | 85 | 5* | [ |
7Cr/SiO2-5 | 1:02 | 650 | 3.6 | 80 | 20 | — | [ |
CrOx/silicalite-1-0.15 | 4:20:01 | 550 | 3 | 36* | 86* | 4* | [ |
Cr/GNFp | 1:02 | 600 | 3.6 | 21 | 56.2 | — | [ |
Cr0.5SiBeta | 1:05:09 | 550 | 9 | 11 | 94.7 | 0.6 | [ |
Cr1.0SiBeta | 1:05:09 | 550 | 9 | 17.6 | 90.8 | 1.2 | |
Cr2.0SiBeta | 1:05:09 | 550 | 9 | 24.8 | 87.1 | 4 | |
Cr5.0SiBeta | 1:05:09 | 550 | 9 | 27.6 | 84.4 | 5.5 | |
Cr7.0SiBeta | 1:05:09 | 550 | 9 | 33.3 | 81.6 | 7 | |
Cr2.0AlBeta | 1:05:09 | 550 | 9 | 4.5 | 45.1 | 0.8 | |
ALD-Cr 0.72% | 1:05:14 | 600 | 4.5 | 34* | 88* | — | [ |
7% Cr-TUD-1 | 10.5:2.55 | 550 | 1020 h‒1 | 45 | 75 | — | [ |
Cr/MSS-1 | 2:08:08 | 600 | 5.4 | 30* | 88* | 4.7 | [ |
Cr/MSS-2 | 2:08:08 | 600 | 5.4 | 32* | 89* | 5.3 | |
Cr/MSS-3 | 2:08:08 | 600 | 5.4 | 29* | 88* | 4.3 | |
Cr/MSS-4 | 2:08:08 | 600 | 5.4 | 27* | 88* | 2.6 | |
5СrOy/Сe0.5Zr0.5O2/SiO2_wet | 1:02 | 675 | 3.6 | 38 | 77 | — | [ |
1Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 3.6 | 87.9 | 1.5 | [ |
2Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 20.2 | 93.5 | 4.1 | |
3Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 12.1 | 90.1 | 3.3 | |
2Cr-ZrO2 | 1:03:06 | 550 | 5 | 17 | 88.2 | 6 | |
2Cr/10Fe-CeO2 | 0.212847222 | 510 | 60 | 2.9* | 80* | — | [ |
7Cr-ZrO2 | 1:02:37 | 550 | 6 | 68 | 60* | 37* | [ |
c-2.5CZ | 2.5:6.5:91 | 550 | 6 | 26 | 69* | 13 | [ |
m-2.5CZ | 2.5:6.5:91 | 550 | 6 | 42 | 60* | 23 | |
c-5CZ | 2.5:6.5:91 | 550 | 6 | 41 | 63* | 24 | |
m-5CZ | 2.5:6.5:91 | 550 | 6 | 58 | 52* | 42 | |
c-10CZ | 2.5:6.5:91 | 550 | 6 | 38 | 68* | 17 | |
m-10CZ | 2.5:6.5:91 | 550 | 6 | 36 | 59* | 21 | |
c-15CZ | 2.5:6.5:91 | 550 | 6 | 59 | 58* | 33 | |
m-15CZ | 2.5:6.5:91 | 550 | 6 | 58 | 59* | 35 | |
5Cr/ZrO2 | 1:02:37 | 600 | 6 | 79.8 | 57.6 | 42.7 | [ |
5Cr/Ce0.1Zr0.9O2 | 1:02:37 | 600 | 6 | 75 | 66.7 | 41.6 | |
5Cr/Ce0.2Zr0.8O2 | 1:02:37 | 600 | 6 | 62.6 | 79.4 | 31.2 | |
5Cr/Ce0.3Zr0.7O2 | 1:02:37 | 600 | 6 | 57.9 | 82.4 | 33.8 | |
5Cr/Ce0.5Zr0.5O2 | 1:02:37 | 600 | 6 | 9.7 | 92.9 | 7.9 | |
5Cr/CeO2 | 1:02:37 | 600 | 6 | 20.8 | 79.8 | 11.9 | |
5 wt% Cr/Al2O3 | 0.085833333 | 600 | 60 | 13.6 | 90 | — | [ |
12 Fe2O3/ZrO2 | 1:02:37 | 600 | 6 | 32 | 73 | — | [ |
Fe2O3-19ZrO2 | 01:01.5 | 550 | 1.8 | 10.2 | 89.2 | 7.35 | [ |
Fe2O3-9ZrO2 | 01:01.5 | 550 | 1.8 | 17.6 | 87.8 | 12.5 | |
Fe2O3-4ZrO2 | 01:01.5 | 550 | 1.8 | 38.7 | 85.7 | 27.5 | |
Fe2O3-3ZrO2 | 01:01.5 | 550 | 1.8 | 39.9 | 83.7 | 28.2 | |
Fe2O3-2ZrO2 | 01:01.5 | 550 | 1.8 | 40.8 | 85.1 | 30.8 | |
Fe2O3-1ZrO2 | 01:01.5 | 550 | 1.8 | 36.3 | 88.5 | 25.7 | |
Fe2O3 | 01:01.5 | 550 | 1.8 | 29.3 | 90.5 | 24.2 | |
FeCr50 | 37:37:26 | 550 | 4.5 | 14.2 | 71 | — | [ |
Fe0.67Ce0.5O2 | 2:02:06 | 700 | 6 | 42.2 | 37.4 | 51.3 | [ |
15FeCeO2 | 0.212847222 | 550 | 6 | 21.5 | 45* | 28* | [ |
FeNi/Ceria-Vo-R | 2.4:4.8:10 | 550 | 1 | 25.2 | 49 | — | [ |
ZnFe2Ox/S-1 | 1:01:04 | 580 | 7.2 | 38* | 97* | 19* | [ |
2V-Fe/KIT-6 | 1:04:05 | 580 | 6 | 37.8 | 87 | 18.5 | [ |
5Fe-5V-Al2O3 | 0.636226852 | 600 | 7.5 | 41.3 | 84.4 | 31* | [ |
7 Ga/SiO2(A) | 1:02 | 600 | 1.8 | 33 | 84 | — | [ |
5% Ga/HZSM-5 | 1:01:08 | 600 | 90 | 25* | 50* | — | [ |
8Ga2O3/SiO2 | 2.5:2.5:60 | 600 | 3.9 | 37* | 93* | — | [ |
ALD-3C (2.9%Ga) | 0.22650463 | 600 | 4.5 | 38 | 82 | — | [ |
Ga4.0SiBEA | 2.5:15:82.5 | 600 | 9 | 57.5 | 64 | — | [ |
5-GaN/Q-3 | 1:02:07 | 600 | 9 | 31 | 93 | — | [ |
5GaN/NaZSM-5(470) | 1:02:07 | 600 | 9 | 45 | 63* | — | [ |
5GaN/KIT-6 | 1:02:07 | 600 | 9 | 24* | 95* | 5* | [ |
5GaN/2000-Fe-silicalite-1 | 1.5:3:25.5 | 600 | 9 | 45* | 78* | 6* | [ |
V-La-MSNS | 1:02:07 | 550 | 6 | 37* | 79* | — | [ |
0.5Cu-10VOx/S-1 | 01:01.5 | 600 | 1.8 | 36 | 90 | 22 | [ |
AlVO7B | 1:01 | 650 | 18 | 62* | 55* | 22* | [ |
20 CeVO4/AC | 1:01:01 | 550 | 6 | 8.5 | 57 | — | [ |
3.4V/In | 2.5:2.5:95 | 540 | 18 | 4.2* | 67* | — | [ |
3.4V/In-S | 2.5:2.5:95 | 540 | 18 | 6.5* | 65* | — | [ |
5.2V-MSNSs | 1:04:04 | 600 | 4.5 | 58* | 83* | — | [ |
6.8V-MCM-41 | 1:04:04 | 600 | 4.5 | 57* | 90* | — | [ |
VOx/SiO2 | 1:01:06 | 600 | 16 | 5.8* | 99* | — | [ |
Co/S-1-HTS | 2.5:2.5:95 | 550 | 24 | 60* | 98* | — | [ |
20%ZnO-ZrO2 | 4:20:01 | 550 | 6 | 18* | 76* | — | [ |
Zn/Mo-Zr-10 | 1:02 | 550 | 7.2 h‒1 | 29.5 | 80 | 12 | [ |
12% In/HZSM-5 | 1:04 | 580 | 6 | 13.3 | 78.9 | 6.34 | [ |
Fig. 15. The structural reconstruction of iron oxide enhances the catalyst coking resistance. Adopted with permission from Ref. [225]. Copyright 2023, Elsevier.
Fig. 16. (Left) O-Mo terminated (110) surface of the NiMoO4 catalyst in CO2 and N2O atmospheres and (right) fully O-terminated surface in an O2 atmosphere. Color code: oxygen-red, nickel-green, molybdenum-grey. Adopted with permission from Ref. [233]. Copyright 2017, Royal Society of Chemistry.
Catalyst | Feed ratio (C4:CO2:inert gas) | Temp. (°C) | WHSV (L g-1 h-1) | XC4 (%) | SC4 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
Fe/S-1-H | 1:1:1 | 600 | 2.1 | 18.7 | 53.4 | 11.7 | [ |
Fe/S-1-E | 1:1:1 | 600 | 2.1 | 17.8 | 52.5 | 11.2 | |
Fe/S-1-E-EDA | 1:1:1 | 600 | 2.1 | 21.3 | 53.4 | 17.9 | |
Fe/S-1-H-EDA | 1:1:1 | 600 | 2.1 | 16.6 | 48.4 | 7.3 | |
Li-Fe2O3/Al2O3 | 1:9 | 600 | 18 | 52* | 29* | — | [ |
15MFO/N-C | 1:3 | 580 | 6000 h-1 | 20* | 90* | — | [ |
Fe2O3 | 1:4:15 | 550 | 9.6 | 14* | 52* | 14* | [ |
Fe4/CeO2 | 1:2:17 | 600 | 24 | 7.0 | 13.5 | 10.5 | [ |
Ni1Fe3/CeO2 | 1:2:17 | 600 | 24 | 11.9 | 21.4 | 18.7 | |
Ni3Fe1/CeO2 | 1:2:17 | 600 | 24 | 30.9 | 0.3 | 59.3 | |
Ni1Fe3/ZrO2 | 1:2:17 | 600 | 24 | 15.8 | 3.7 | 35.1 | |
Ni1Fe3/CeO2-ZrO2 | 1:2:17 | 600 | 24 | 13.9 | 27.4 | 21.7 | |
Ni1Fe3/CeO2+Ni1Fe3/ZrO2 | 1:2:17 | 600 | 24 | 14.5 | 7.5 | 28.3 | |
FeVCrOx/10%ZnCl2/Al2O3 | 1:9 | 600 | 18 | 81.1 | 49 | 10.2 | [ |
Fe2O3/Meso-CeAl-100 | 1:9 | 600 | 18 | 85 | 51 | 14 | [ |
Meso-FeAl | 1:9 | 600 | 18 | 73* | 24* | 1.8* | [ |
20 wt% FeCaAlOx | 1:9 | 600 | 18 | 82 | 34 | 7 | [ |
20 wt% FeCrAlOx | 1:9 | 600 | 18 | 80 | 34 | 10 | |
PtMn/SiO2 | 1:1:8 | 500 | 24 | 36 | 99* | — | [ |
Ni-Mo/Al2O3 | 1:2 | 450 | 6000 h-1 | 7.5 | 45 | — | [ |
5%Cr-SiO2 | 1:6 | 600 | 12.6 | 82.2 | 41.9 | — | [ |
3Cr-3Ce/SBA | 1:5 | 570 | 2.3 | 35.4 | 89.6 | 7.1 | [ |
10%CrOx/Ce0.5Zr0.5O2 | 1:2:7 | 550 | 6 | 37* | 65* | — | [ |
ZnO/S-1-0.08 | 1:1 | 570 | 3.5 | 44.3 | 81.7 | 5.5 | [ |
ZnO/S-1-0.35 | 1:1 | 570 | 3.5 | 49.0 | 79.4 | 7.2 | |
ZnO/S-1-1 | 1:1 | 570 | 3.5 | 41.4 | 82.6 | 4.6 | |
ZnO/S-1-1.7 | 1:1 | 570 | 3.5 | 36.4 | 83.0 | 2.7 | |
1%ZnO/S-1 | 1:1 | 570 | 3.5 | 22.6 | 78.3 | 2.7 | [ |
2%ZnO/S-1 | 1:1 | 570 | 3.5 | 37.7 | 80.4 | 3.8 | |
3%ZnO/S-1 | 1:1 | 570 | 3.5 | 44.1 | 80.7 | 4.2 | |
5%ZnO/S-1 | 1:1 | 570 | 3.5 | 49.0 | 79.4 | 7.2 | |
9%ZnO/S-1 | 1:1 | 570 | 3.5 | 50.7 | 77.1 | 7.3 | |
5%ZnO/SBA | 1:1 | 570 | 3.5 | 17.6 | 72.7 | 2.0 |
Table 4 Summary of the catalytic performance of various metal-based catalysts used in oxidative dehydrogenation of butane/butene with CO2.
Catalyst | Feed ratio (C4:CO2:inert gas) | Temp. (°C) | WHSV (L g-1 h-1) | XC4 (%) | SC4 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
Fe/S-1-H | 1:1:1 | 600 | 2.1 | 18.7 | 53.4 | 11.7 | [ |
Fe/S-1-E | 1:1:1 | 600 | 2.1 | 17.8 | 52.5 | 11.2 | |
Fe/S-1-E-EDA | 1:1:1 | 600 | 2.1 | 21.3 | 53.4 | 17.9 | |
Fe/S-1-H-EDA | 1:1:1 | 600 | 2.1 | 16.6 | 48.4 | 7.3 | |
Li-Fe2O3/Al2O3 | 1:9 | 600 | 18 | 52* | 29* | — | [ |
15MFO/N-C | 1:3 | 580 | 6000 h-1 | 20* | 90* | — | [ |
Fe2O3 | 1:4:15 | 550 | 9.6 | 14* | 52* | 14* | [ |
Fe4/CeO2 | 1:2:17 | 600 | 24 | 7.0 | 13.5 | 10.5 | [ |
Ni1Fe3/CeO2 | 1:2:17 | 600 | 24 | 11.9 | 21.4 | 18.7 | |
Ni3Fe1/CeO2 | 1:2:17 | 600 | 24 | 30.9 | 0.3 | 59.3 | |
Ni1Fe3/ZrO2 | 1:2:17 | 600 | 24 | 15.8 | 3.7 | 35.1 | |
Ni1Fe3/CeO2-ZrO2 | 1:2:17 | 600 | 24 | 13.9 | 27.4 | 21.7 | |
Ni1Fe3/CeO2+Ni1Fe3/ZrO2 | 1:2:17 | 600 | 24 | 14.5 | 7.5 | 28.3 | |
FeVCrOx/10%ZnCl2/Al2O3 | 1:9 | 600 | 18 | 81.1 | 49 | 10.2 | [ |
Fe2O3/Meso-CeAl-100 | 1:9 | 600 | 18 | 85 | 51 | 14 | [ |
Meso-FeAl | 1:9 | 600 | 18 | 73* | 24* | 1.8* | [ |
20 wt% FeCaAlOx | 1:9 | 600 | 18 | 82 | 34 | 7 | [ |
20 wt% FeCrAlOx | 1:9 | 600 | 18 | 80 | 34 | 10 | |
PtMn/SiO2 | 1:1:8 | 500 | 24 | 36 | 99* | — | [ |
Ni-Mo/Al2O3 | 1:2 | 450 | 6000 h-1 | 7.5 | 45 | — | [ |
5%Cr-SiO2 | 1:6 | 600 | 12.6 | 82.2 | 41.9 | — | [ |
3Cr-3Ce/SBA | 1:5 | 570 | 2.3 | 35.4 | 89.6 | 7.1 | [ |
10%CrOx/Ce0.5Zr0.5O2 | 1:2:7 | 550 | 6 | 37* | 65* | — | [ |
ZnO/S-1-0.08 | 1:1 | 570 | 3.5 | 44.3 | 81.7 | 5.5 | [ |
ZnO/S-1-0.35 | 1:1 | 570 | 3.5 | 49.0 | 79.4 | 7.2 | |
ZnO/S-1-1 | 1:1 | 570 | 3.5 | 41.4 | 82.6 | 4.6 | |
ZnO/S-1-1.7 | 1:1 | 570 | 3.5 | 36.4 | 83.0 | 2.7 | |
1%ZnO/S-1 | 1:1 | 570 | 3.5 | 22.6 | 78.3 | 2.7 | [ |
2%ZnO/S-1 | 1:1 | 570 | 3.5 | 37.7 | 80.4 | 3.8 | |
3%ZnO/S-1 | 1:1 | 570 | 3.5 | 44.1 | 80.7 | 4.2 | |
5%ZnO/S-1 | 1:1 | 570 | 3.5 | 49.0 | 79.4 | 7.2 | |
9%ZnO/S-1 | 1:1 | 570 | 3.5 | 50.7 | 77.1 | 7.3 | |
5%ZnO/SBA | 1:1 | 570 | 3.5 | 17.6 | 72.7 | 2.0 |
|
[1] | 郎程广, 许彦桐, 姚向东. 通过缺陷优化析氢反应电催化剂: 最新研究进展与展望[J]. 催化学报, 2024, 64(9): 4-31. |
[2] | 任小敏, 戴慧聪, 刘鑫, 杨启华. 多位点隔离的金属催化剂用于高效选择性加氢[J]. 催化学报, 2024, 62(7): 108-123. |
[3] | 刘露杰, 刘奔, 中川善直, 刘斯宝, 王亮, 藪下瑞帆, 冨重圭一. 生物质和塑料加氢脱氧制备燃料和化学品的双金属催化剂研究进展[J]. 催化学报, 2024, 62(7): 1-31. |
[4] | 陈瑞, 方翔, 张东方, 赫兰齐, 吴胤龙, 孙成华, 王昆, 宋树芹. 原位构筑三维有序自支撑Co-N-C一体化电极并用于高效电催化氧还原反应[J]. 催化学报, 2024, 61(6): 237-246. |
[5] | 孙旭科, 刘荣升, 范改丽, 刘昱含, 叶芳秀, 于政锡, 刘中民. Zn/ZSM-5催化剂中Zn物种与CO2和正丁烷耦合反应间相关性研究[J]. 催化学报, 2024, 61(6): 154-163. |
[6] | 邓欣, 郑彩艳, 李玮杰, 王佳敏, 杨迪, 胡振芃, 李兰冬. 金属镍活性中心在惰性金属载体中的自分散及其催化炔烃选择加氢性能[J]. 催化学报, 2024, 61(6): 259-268. |
[7] | 干雅梅, 柴甜甜, 张健, 高聪, 宋伟, 吴静, 刘立明, 陈修来. 利用光驱动的生物杂合系统实现CO2转化生产化学品[J]. 催化学报, 2024, 60(5): 294-303. |
[8] | 田芸睿, 谭皓天, 李霞, 贾晶晶, 毛子贤, 刘健, 梁骥. 用于氨电氧化反应生成硝酸盐/亚硝酸盐的金属基电催化剂:过去、现在和未来[J]. 催化学报, 2024, 56(1): 25-50. |
[9] | 黄志鹏, 杨阳, 穆骏驹, 李根恒, 韩建宇, 任濮宁, 张健, 罗能超, 韩克利, 王峰. 利用金属-自由基相互作用调控自由基的定向转化[J]. 催化学报, 2023, 45(2): 120-131. |
[10] | 商禹, 丁云轩, 张培立, 王梅, 贾玉飞, 徐云龙, 李亚晴, 范科, 孙立成. 吡啶氮或吡咯氮: 氮掺杂碳催化剂在电催化还原CO2中活性中心研究[J]. 催化学报, 2022, 43(9): 2405-2413. |
[11] | 周紫璇, 高鹏. 多相催化CO2加氢直接合成大宗化学品与液体燃料[J]. 催化学报, 2022, 43(8): 2045-2056. |
[12] | 欧阳, 李松达, 王飞, 段心怡, 袁文涛, 杨杭生, 张泽, 王勇. 二氧化钛负载的铂纳米颗粒在CO和O2环境下表面平台位点和台阶位点的可逆转变[J]. 催化学报, 2022, 43(8): 2026-2033. |
[13] | 王春鹏, 王哲, 毛善俊, 陈志荣, 王勇. 多相催化剂活性位点的配位环境及其对催化性能的影响[J]. 催化学报, 2022, 43(4): 928-955. |
[14] | 蒋国星, 张龙海, 邹文午, 张伟锋, 王秀军, 宋慧宇, 崔志明, 杜丽. 精确可控串联策略触发高效的氧还原活性[J]. 催化学报, 2022, 43(4): 1042-1048. |
[15] | Teera Chantarojsiri, Tassaneewan Soisuwan, Pornwimon Kongkiatkrai. 羧酸盐的绿色合成: 用于有机卤化物和烯烃电羧基化反应电极上的反应及其机理[J]. 催化学报, 2022, 43(12): 3046-3061. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||