催化学报 ›› 2024, Vol. 65: 70-78.DOI: 10.1016/S1872-2067(24)60082-3

• 论文 • 上一篇    下一篇

可见光驱动的Mg掺杂SrTaO2N催化剂助力Z-型光催化全水分解

徐君a,b, 罗英a, 郭乔琪a, 孙文峥a, 陈闪山c,*(), 王征a,d,*(), 贺泓a,*()   

  1. a中国科学院生态环境研究中心, 大气环境与污染控制实验室, 北京100085
    b河南理工大学化学与化工学院, 河南焦作454000
    c南开大学材料科学与工程学院, 国家新材料研究院, 天津300350
    d中国科学院大学资源与环境学院, 北京101408
  • 收稿日期:2024-06-13 接受日期:2024-06-24 出版日期:2024-10-18 发布日期:2024-10-15
  • 通讯作者: *电子信箱: zhengwang@rcees.ac.cn (王征), honghe@rcees.ac.cn (贺泓), sschen@nankai.edu.cn (陈闪山).
  • 基金资助:
    国家自然科学基金(22376207);国家自然科学基金(22272082);中国博士后科学基金面上项目(2022M723315);中国科学院生态环境研究中心CCUS战略重点项目

Mg-doped SrTaO2N as a visible-light-driven H2-evolution photocatalyst for accelerated Z-scheme overall water splitting

Jun Xua,b, Ying Luoa, Qiaoqi Guoa, Wenzheng Suna, Shanshan Chenc,*(), Zheng Wanga,d,*(), Hong Hea,*()   

  1. aLaboratory of Atmospheric Environment and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    bCollege of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
    cSchool of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
    dCollege of Resource and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2024-06-13 Accepted:2024-06-24 Online:2024-10-18 Published:2024-10-15
  • Contact: *E-mail: zhengwang@rcees.ac.cn (Z. Wang), honghe@rcees.ac.cn (H.He), sschen@nankai.edu.cn (S. Chen).
  • Supported by:
    National Natural Science Foundation of China(22376207);National Natural Science Foundation of China(22272082);China Postdoctoral Science Foundation(2022M723315);CCUS Strategic Priority Program of Research Center for Eco-Environmental Sciences of Chinese Academy of Sciences of China

摘要:

光催化分解水技术可以通过太阳能驱动的光解水过程将太阳能大规模转化为清洁可再生的氢能, 是解决能源危机和环境污染问题的理想途径. 与一步光激发全水分解不同, 两步光激发全解水(Z-型全解水)放宽了严格的带隙要求, 是一种非常有前景的策略. 然而, 两步激发光催化分解水效率仍远低于理论值. 开发可见光响应的光催化剂有望提升太阳能的利用率. SrTaO2N因能够吸收600 nm可见光, 且具有合适的导带和价带优点, 引起科研工作者的广泛关注. 然而, 高温氮化过程中产生的大量缺陷态成为光生电荷复合中心, 抑制了光生电子和空穴的分离与传输. 因此, 采取有效的措施控制SrTaO2N的缺陷密度对提高光催化性能至关重要, 但具有很大的挑战性.

本文采用Mg掺杂策略, 利用KCl熔融盐辅助的热氮化法合成了缺陷密度低、颗粒尺寸和形貌均一的Mg掺杂SrTaO2N (SrTaO2N:Mg)光催化剂. 通过X射线粉末衍射(XRD)、XRD数据的Rietveld精修、微观形貌分析(扫描电子显微镜和透射电子显微镜)和元素分析等证明了Mg占据了SrTaO2N钙钛矿型晶格的Ta位点. 紫外-可见漫反射光谱(UV-vis DRS)和X射线光电子能谱表明, Mg的掺杂在一定程度上抑制了高温氮化过程中低价Ta缺陷物种(光生载流子复合中心)的产生. 结合UV-vis DRS谱和莫特-肖特基曲线结果, 证明了Mg掺杂所引起的能带结构变化为水分解产氢反应提供了更强的驱动力, 有利于光生载流子的进一步分离. 采用低温稳态光致发光光谱、时间分辨光致发光衰减光谱、光电流强度曲线和电化学阻抗曲线等分析了Mg掺杂前后SrTaO2N光催化剂光生载流子的分离和传输行为. 研究结果表明, Mg掺杂有效地抑制了缺陷态的产生, 促进了光生载流子的分离与传输. 通过浸渍氢化和光沉过程分步修饰了Pt和Cr2O3, 实现了SrTaO2N:Mg表面核壳型Pt/Cr2O3析氢助催化剂的成功负载. 在最优化的Pt/Cr2O3助催化剂负载条件下, SrTaO2N:Mg的光催化析氢活性是未掺杂Mg的SrTaO2N的10倍, 420 nm波段的表观量子效率为1.51%, 超过了大多数SrTaO2N掺杂改性的研究. 光催化析氢性能的提升主要归因于Mg掺杂和助催化剂改性所引起的缺陷密度的降低和电荷分离能力的增强. 此外, 将Pt/Cr2O3修饰的SrTaO2N:Mg作为产氢催化剂, 以Au-FeCoOx共修饰的BiVO4作为产氧催化剂, 以[Fe(CN)6]3−/[Fe(CN)6]4−为电子传输媒介, 成功构建了可见光响应的Z型全解水体系, 420 nm波段的表观量子效率达到可观的1.36%, 经5次循环仍能保持良好的全分解水性能.

综上, Mg掺杂策略可以有效抑制缺陷态的形成, 促进光生载流子的传输与分离, 提高SrTaO2N催化剂光催化产氢性能, 为设计高性能宽光谱可见光驱动全解水体系提供了一定参考.

关键词: 光催化全解水, SrTaO2N光催化剂, Mg掺杂, 缺陷密度, 助催化剂

Abstract:

Perovskite SrTaO2N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting. However, the formation of defect states during thermal nitridation severely hinders the separation of charges, resulting in poor photocatalytic activity. In the present study, we successfully synthesize SrTaO2N photocatalyst with low density of defect states, uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping. Some important parameters, such as the size of unit cell, the content of nitrogen, and microstructure, prove the successful doping of Mg. The defect-related carrier recombination has been significantly reduced by Mg doping, which effectively promotes the charge separation. Moreover, Mg doping induces a change of the band edge, which makes proton reduction have a stronger driving force. After modifying with the core/shell-structured Pt/Cr2O3 cocatalyst, the H2 evolution activity of the optimized SrTaO2N:Mg is 10 times that of the undoped SrTaO2N, with an impressive apparent quantum yield of 1.51% at 420 nm. By coupling with Au-FeCoOx modified BiVO4 as an O2-evolution photocatalyst and [Fe(CN)6]3−/[Fe(CN)6]4− as the redox couple, a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36% at 420 nm. This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.

Key words: Photocatalytic overall water splitting, SrTaO2N photocatalyst, Mg doping, Defect density, Cocatalyst