催化学报 ›› 2024, Vol. 62: 1-31.DOI: 10.1016/S1872-2067(24)60054-9

• 综述 •    下一篇

生物质和塑料加氢脱氧制备燃料和化学品的双金属催化剂研究进展

刘露杰a, 刘奔b, 中川善直b,*(), 刘斯宝c, 王亮a, 藪下瑞帆b, 冨重圭一b,d,*()   

  1. a浙江大学化学工程与生物工程学院, 生物质化工教育部重点实验室, 浙江杭州 310027, 中国
    b日本东北大学(Tohoku University)工学部应用化学系, 仙台, 日本
    c福建师范大学环境与资源学院, 聚合物资源绿色循环利用教育部工程研究中心, 福建省污染控制与资源循环利用重点实验室, 福建福州 350007, 中国
    d日本东北大学(Tohoku University)材料科学高等研究所, 仙台, 日本
  • 收稿日期:2024-04-16 接受日期:2024-05-18 出版日期:2024-07-18 发布日期:2024-07-10
  • 通讯作者: 电子信箱: yoshinao@erec.che.tohoku.ac.jp(中川善直), tomishige@tohoku.ac.jp(冨重圭一).
  • 作者简介:目前地址: 复旦大学化学系, 上海 200433, 中国
  • 基金资助:
    日本学术振兴会(23H05404);日本学术振兴会(23K20034);国家自然科学基金(22202176);国家自然科学基金(22208243);国家自然科学基金(52276209);国家资助博士后研究人员计划(GZB20240650);中国博士后科学基金(2021M702802)

Recent progress on bimetallic catalysts for the production of fuels and chemicals from biomass and plastics by hydrodeoxygenation

Lujie Liua, Ben Liub, Yoshinao Nakagawab,*(), Sibao Liuc, Liang Wanga, Mizuho Yabushitab, Keiichi Tomishigeb,d,*()   

  1. aKey Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
    bDepartment of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
    cEngineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou 350007, Fujian, China
    dAdvanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
  • Received:2024-04-16 Accepted:2024-05-18 Online:2024-07-18 Published:2024-07-10
  • Contact: E-mail: yoshinao@erec.che.tohoku.ac.jp (Y. Nakagawa), tomishige@tohoku.ac.jp (K. Tomishige).
  • About author:Yoshinao Nakagawa (Tohoku University) received his Ph.D. in 2005 from the Graduate School of Engineering, the University of Tokyo. After 4 years of postdoctoral research in the University of Tokyo, he joined the research group of Keiichi Tomishige at University of Tsukuba. He moved to Tohoku University and became an assistant professor in 2010. Since 2013, he has been an associate professor. His current research interests are selective catalytic oxidations and reductions, especially those of biomass-related compounds.
    Keiichi Tomishige received his B.S., M.S. and Ph.D. from the Graduate School of Science, Department of Chemistry, the University of Tokyo. During his Ph.D. course in 1994, he moved to the Graduate School of Engineering, The University of Tokyo as a research associate. In 1998, he became a lecturer, and then he moved to Institute of Materials Science, University of Tsukuba as a lecturer in 2001. Since 2004 he has been an associate professor, Graduate School of Pure and Applied Sciences, University of Tsukuba. Since 2010, he has been a professor, School of Engineering, Tohoku University. His research interests are the development of heterogeneous catalysts for production of biomass-derived chemicals and non-reductive CO2 conversion. He has also a role of Associate Editor of Green Chemistry.
    First author contact:

    Present address: Department of Chemistry, Fudan University, Shanghai 200433, China.

  • Supported by:
    Japan Society for the Promotion of Science(23H05404);Japan Society for the Promotion of Science(23K20034);National Natural Science Foundation of China(22202176);National Natural Science Foundation of China(22208243);National Natural Science Foundation of China(52276209);Postdoctoral Fellowship Program of CPSF(GZB20240650);China Postdoctoral Science Foundation(2021M702802)

摘要:

在全球致力于实现碳中和的大背景下, 生物质和废弃塑料的高值化利用已成为科研领域的研究热点. 加氢脱氧反应(HDO), 作为实现这一目标的重要途径之一, 通过精准解离C-O/C-C键, 为生产燃料和化学品提供了有效方法. 在HDO过程中, C-O键的氢解及不饱和键的氢化是主要步骤, 而C-C键的氢解则是需要避免的副反应.

与简单的氢化反应相比, HDO过程需要具有双功能特性的催化剂, 特别是当目标产物为含氧化合物时, 催化剂的区域选择性至关重要. 近年来, 双金属催化剂在生物质及其衍生物以及含氧塑料废弃物和聚合物的HDO过程中的应用受到广泛关注. 通过深入理解金属纳米颗粒与金属氧化物之间的协同作用和强相互作用, 双金属催化剂的理性设计取得了显著进展. 特别是, 部分金属氧化物(如ReOx, WOx, MoOx, FeOx)与贵金属(如Ir, Pt, Ru)之间存在的强相互作用, 不仅促进了C-O键的断裂, 还有效保留了C-C键, 为催化剂的高活性和高选择性奠定了基础. 通过调整催化剂组成、使用小比表面积的载体等方法, 可以进一步优化催化剂性能.

本综述聚焦于金属氧化物改性的贵金属催化剂在HDO反应中的最新研究进展, 特别是总结了Ir、Pt和Ru基催化剂在HDO反应中的应用. 由于这类催化剂的结构和性能能够精确控制, 并且每种催化剂都具备独特的选择性, 因此被广泛应用于生物质衍生物和塑料废弃物的HDO过程中. 本文总结了双金属催化剂的结构特点、HDO反应机制、催化剂结构与催化性能之间的关联, 以及这些催化剂在高附加值化学品生产中的实际应用. 我们以甘油和1,2-丙二醇的氢解为模型反应, 深入探讨了基于Ir、Pt和Ru的双金属催化剂的催化性能、结构特点和催化机理. 这些催化剂在温和条件下实现了高效的氢脱氧反应, 有效抑制了C-C键的断裂, 并优化了化学选择性和区域选择性. 双金属催化剂在生物质精炼和塑料/聚合物转化方面展现出广泛的适用性. 本文还介绍了其在木质纤维素衍生原料、羰基化合物以及聚碳酸酯等塑料中的应用. 然而, 双金属催化剂的稳定性在实际应用中仍面临挑战, 如金属烧结、浸出、积碳及金属-金属氧化物界面的重构等问题. 因此, 未来的研究重点是开发高效的再生方法和高度稳定的催化剂.

综上所述, 金属氧化物改性的贵金属催化剂在HDO反应中展现出巨大潜力. 通过深入研究和优化, 有望为生物质和塑料的高值化利用提供有效解决方案. 本文旨在为双金属催化剂的理性设计和优化提供参考, 以期推动生物质和塑料的高值化利用技术的进一步发展和应用.

关键词: 加氢脱氧, 氢解, 双金属催化剂, 生物质衍生物, 塑料废弃物

Abstract:

Valorization of biomass and plastics is an urgent assignment to achieve the goal of carbon neutrality. Hydrodeoxygenation using bimetallic catalysts with distinct active sites is one of the most effective approaches to producing fuels and chemicals via C-O/C-C bonds hydrogenolysis and hydrogenation. Rational design of bimetallic catalysts has been progressed in recent studies owing to the understanding of synergy and strong mutual interaction between metal nanoparticles and metal oxide species. Thus, activity of bimetallic catalysts has been further improved, and the chemoselectivity for suppression of C-C bond dissociation and the regioselectivity among different C-O bonds, which have less been achieved before, are realized in the hydrodeoxygenation reactions. The catalytic performances, catalyst structures, and reaction mechanisms are directly compared and discussed in details based on the C-O bond cleavage using glycerol and 1,2-propanediol hydrogenolysis as model reactions over Ir-, Pt-, and Ru-based bimetallic catalysts. Finally, application of these bimetallic catalysts to conversion of lignocellulose-derived feedstocks, carbonyl compounds, and typical plastic of polycarbonates is introduced.

Key words: Hydrodeoxygenation, Hydrogenolysis, Bimetallic catalyst, Biomass derivative, Plastic waste