催化学报 ›› 2024, Vol. 62: 1-31.DOI: 10.1016/S1872-2067(24)60054-9
• 综述 • 下一篇
刘露杰a, 刘奔b, 中川善直b,*(), 刘斯宝c, 王亮a, 藪下瑞帆b, 冨重圭一b,d,*(
)
收稿日期:
2024-04-16
接受日期:
2024-05-18
出版日期:
2024-07-18
发布日期:
2024-07-10
通讯作者:
电子信箱: 作者简介:
† 目前地址: 复旦大学化学系, 上海 200433, 中国
基金资助:
Lujie Liua, Ben Liub, Yoshinao Nakagawab,*(), Sibao Liuc, Liang Wanga, Mizuho Yabushitab, Keiichi Tomishigeb,d,*(
)
Received:
2024-04-16
Accepted:
2024-05-18
Online:
2024-07-18
Published:
2024-07-10
Contact:
E-mail: About author:
Yoshinao Nakagawa (Tohoku University) received his Ph.D. in 2005 from the Graduate School of Engineering, the University of Tokyo. After 4 years of postdoctoral research in the University of Tokyo, he joined the research group of Keiichi Tomishige at University of Tsukuba. He moved to Tohoku University and became an assistant professor in 2010. Since 2013, he has been an associate professor. His current research interests are selective catalytic oxidations and reductions, especially those of biomass-related compounds.† Present address: Department of Chemistry, Fudan University, Shanghai 200433, China.
Supported by:
摘要:
在全球致力于实现碳中和的大背景下, 生物质和废弃塑料的高值化利用已成为科研领域的研究热点. 加氢脱氧反应(HDO), 作为实现这一目标的重要途径之一, 通过精准解离C-O/C-C键, 为生产燃料和化学品提供了有效方法. 在HDO过程中, C-O键的氢解及不饱和键的氢化是主要步骤, 而C-C键的氢解则是需要避免的副反应.
与简单的氢化反应相比, HDO过程需要具有双功能特性的催化剂, 特别是当目标产物为含氧化合物时, 催化剂的区域选择性至关重要. 近年来, 双金属催化剂在生物质及其衍生物以及含氧塑料废弃物和聚合物的HDO过程中的应用受到广泛关注. 通过深入理解金属纳米颗粒与金属氧化物之间的协同作用和强相互作用, 双金属催化剂的理性设计取得了显著进展. 特别是, 部分金属氧化物(如ReOx, WOx, MoOx, FeOx)与贵金属(如Ir, Pt, Ru)之间存在的强相互作用, 不仅促进了C-O键的断裂, 还有效保留了C-C键, 为催化剂的高活性和高选择性奠定了基础. 通过调整催化剂组成、使用小比表面积的载体等方法, 可以进一步优化催化剂性能.
本综述聚焦于金属氧化物改性的贵金属催化剂在HDO反应中的最新研究进展, 特别是总结了Ir、Pt和Ru基催化剂在HDO反应中的应用. 由于这类催化剂的结构和性能能够精确控制, 并且每种催化剂都具备独特的选择性, 因此被广泛应用于生物质衍生物和塑料废弃物的HDO过程中. 本文总结了双金属催化剂的结构特点、HDO反应机制、催化剂结构与催化性能之间的关联, 以及这些催化剂在高附加值化学品生产中的实际应用. 我们以甘油和1,2-丙二醇的氢解为模型反应, 深入探讨了基于Ir、Pt和Ru的双金属催化剂的催化性能、结构特点和催化机理. 这些催化剂在温和条件下实现了高效的氢脱氧反应, 有效抑制了C-C键的断裂, 并优化了化学选择性和区域选择性. 双金属催化剂在生物质精炼和塑料/聚合物转化方面展现出广泛的适用性. 本文还介绍了其在木质纤维素衍生原料、羰基化合物以及聚碳酸酯等塑料中的应用. 然而, 双金属催化剂的稳定性在实际应用中仍面临挑战, 如金属烧结、浸出、积碳及金属-金属氧化物界面的重构等问题. 因此, 未来的研究重点是开发高效的再生方法和高度稳定的催化剂.
综上所述, 金属氧化物改性的贵金属催化剂在HDO反应中展现出巨大潜力. 通过深入研究和优化, 有望为生物质和塑料的高值化利用提供有效解决方案. 本文旨在为双金属催化剂的理性设计和优化提供参考, 以期推动生物质和塑料的高值化利用技术的进一步发展和应用.
刘露杰, 刘奔, 中川善直, 刘斯宝, 王亮, 藪下瑞帆, 冨重圭一. 生物质和塑料加氢脱氧制备燃料和化学品的双金属催化剂研究进展[J]. 催化学报, 2024, 62: 1-31.
Lujie Liu, Ben Liu, Yoshinao Nakagawa, Sibao Liu, Liang Wang, Mizuho Yabushita, Keiichi Tomishige. Recent progress on bimetallic catalysts for the production of fuels and chemicals from biomass and plastics by hydrodeoxygenation[J]. Chinese Journal of Catalysis, 2024, 62: 1-31.
Entry | Catalyst | P(H2)/MPa | Temp./K | Conv./% | Target product [selectivity/%] | Average rate gtarget product gNM‒1 h‒1 | Initial rate gtarget product gNM‒1 h‒1 | Note | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) + H2SO4 | 8 | 393 | 81 | 1,3-PrD [ | 5.7 | 18 | highest 1,3-PrD formation rate until 2018 | [ |
2 | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) + HZSM-5 | 8 | 393 | >99.9 | propane [ | 1.1 | — | total HDO | [ |
3 | Ir-ReOx/SiO2 (20 wt% Ir, Re/Ir = 0.34) | 8 | 393 | 69 | 1,3-PrD [ | 7.4 | 22 | improved activity by high surface concentration of active metals | [ |
4 | Ir-ReOx/TiO2 (4 wt% Ir, Re/Ir = 0.24) | 8 | 393 | 69 | 1,3-PrD [ | 17 | 52 | small surface area support; highest activity among Ir-based catalysts | [ |
5 | Ir-FeOx/TiO2 (5 wt% Ir, Fe/Ir=0.25) | 8 | 453 | >99.9 | 2-PrOH [ | 0.028 | — | first catalyst with high selectivity in 1,2-diols to 2-mono-ols; small surface area support | [ |
8 | 453 | 29 | 1,2-PrD [ | — | 0.4 | ||||
6 | Ir-Fe-Mo/BN (20 wt% Ir, Fe/Ir = 0.13, Mo/Ir = 0.08) | 8 | 453 | 32 | 1,2-PrD [ | — | 2.5 | highly efficient-trimetallic alloy catalyst for 1,2-diols to 2-mono-ols; small surface area support | [ |
7 | Pt/WOx/AlOOH (1.8 wt% Pt, 8 wt% W) | 5 | 453 | 100 | 1,3-PrD [ | 2.3 | — | highest 1,3-PrD yield until 2022 | [ |
8 | Au-Pt/WO3/Al2O3 (0.1 wt% Au, 2 wt% Pt, 7.5 wt% W) | 5 | 453 | 78 | 1,3-PrD [ | 1.7 | — | activity increase by Au addition (ca. two-fold increase) | [ |
9 | Pt/meso-WOx (2 wt% Pt) | 1 | 413 | 60 | 1,3-PrD [ | 0.7 | — | single/pseudo-single atom Pt catalyst under low H2 pressure of 1 MPa | [ |
1 | 433 | 16 | 1,3-PrD [ | — | 3.8 | ||||
10 | Pt-AlOx/WO3 (0.4 wt% Pt, 0.2 wt% Al) | 3 | 453 | 90 | 1,3-PrD [ | 7.5 | — | most effective among WOx-supported ones | [ |
11 | Pt-WOx/t-ZrO2 (1.9 wt% Pt, ~7.6 wt% W) | 8 | 413 | 76 | 1,3-PrD [ | 5.1 | — | most effective among ZrO2-supported ones | [ |
12 | Pt/W-SBA-15 (3 wt% Pt, W/Si=1/640) | 4 | 423 | 87 | 1,3-PrD [ | 1.7 | — | first report of effective Pt-W catalyst using silica-based support and small W amount | [ |
13 | Pt/WOx/T-Ta2O5 (0.68 wt% Pt, 0.51 wt% W) | 5 | 433 | 87 | 1,3-PrD [ | 19 | — | highest 1,3-PrD formation rate | [ |
14 | Pt/Nb14W3O44 (3 wt% Pt) | 8 | 423 | 100 | 1,3-PrD [ | 17 | 30 | highest 1,3-PrD yield & good activity | [ |
15 | Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 8 | 413 | 100 | 1,3-PrD [ | 2.5 | 6.5 | highest 1,3-PrD yield among catalysts using conventional stable support | [ |
7 | 453 | 100 | 1-PrOH [ | 3.8 | — | overhydrogenolysis of 1-PrOH does not occur | [ | ||
16 | Ru/C (5 wt% Ru) + Amberlyst 15 | 8 | 393 | 79 | 1,2-PrD [ | 0.13 | — | typical system of Ru + acid | [ |
17 | Ru-ReOx/SiO2 (3.2 wt% Ru, 3.6 wt% Re) | 8 | 433 | 52 | 1,2-PrD [ | 20 | — | activity increase and suppression of C-C dissociation by Re; similar catalyst used for 1,2-PrD to mixture of PrOHs | [ |
18 | Ru-MoOx/CNTs (2 wt% Ru, 5 wt% Mo) | 4 | 473 | 47 | 1,2-PrD [ | 39 | — | suppression of C-C dissociation by Mo | [ |
19 | Ru-WOx/C (5 wt% Ru, 2 wt% W) | 5 | 423 | 73 | 1,2-PrD [ | 3.2 | — | very high suppression of C-C dissociation by W | [ |
20 | Rh-ReOx/SiO2 (4 wt% Rh, Re/Rh = 0.5) | 8 | 393 | 100 | 1-PrOH [ | 11 | — | high activity at low temperature; low regioselectivity in diol formation | [ |
Table 1 Selected catalyst systems for glycerol hydrogenolysis over noble metal catalysts.
Entry | Catalyst | P(H2)/MPa | Temp./K | Conv./% | Target product [selectivity/%] | Average rate gtarget product gNM‒1 h‒1 | Initial rate gtarget product gNM‒1 h‒1 | Note | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) + H2SO4 | 8 | 393 | 81 | 1,3-PrD [ | 5.7 | 18 | highest 1,3-PrD formation rate until 2018 | [ |
2 | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) + HZSM-5 | 8 | 393 | >99.9 | propane [ | 1.1 | — | total HDO | [ |
3 | Ir-ReOx/SiO2 (20 wt% Ir, Re/Ir = 0.34) | 8 | 393 | 69 | 1,3-PrD [ | 7.4 | 22 | improved activity by high surface concentration of active metals | [ |
4 | Ir-ReOx/TiO2 (4 wt% Ir, Re/Ir = 0.24) | 8 | 393 | 69 | 1,3-PrD [ | 17 | 52 | small surface area support; highest activity among Ir-based catalysts | [ |
5 | Ir-FeOx/TiO2 (5 wt% Ir, Fe/Ir=0.25) | 8 | 453 | >99.9 | 2-PrOH [ | 0.028 | — | first catalyst with high selectivity in 1,2-diols to 2-mono-ols; small surface area support | [ |
8 | 453 | 29 | 1,2-PrD [ | — | 0.4 | ||||
6 | Ir-Fe-Mo/BN (20 wt% Ir, Fe/Ir = 0.13, Mo/Ir = 0.08) | 8 | 453 | 32 | 1,2-PrD [ | — | 2.5 | highly efficient-trimetallic alloy catalyst for 1,2-diols to 2-mono-ols; small surface area support | [ |
7 | Pt/WOx/AlOOH (1.8 wt% Pt, 8 wt% W) | 5 | 453 | 100 | 1,3-PrD [ | 2.3 | — | highest 1,3-PrD yield until 2022 | [ |
8 | Au-Pt/WO3/Al2O3 (0.1 wt% Au, 2 wt% Pt, 7.5 wt% W) | 5 | 453 | 78 | 1,3-PrD [ | 1.7 | — | activity increase by Au addition (ca. two-fold increase) | [ |
9 | Pt/meso-WOx (2 wt% Pt) | 1 | 413 | 60 | 1,3-PrD [ | 0.7 | — | single/pseudo-single atom Pt catalyst under low H2 pressure of 1 MPa | [ |
1 | 433 | 16 | 1,3-PrD [ | — | 3.8 | ||||
10 | Pt-AlOx/WO3 (0.4 wt% Pt, 0.2 wt% Al) | 3 | 453 | 90 | 1,3-PrD [ | 7.5 | — | most effective among WOx-supported ones | [ |
11 | Pt-WOx/t-ZrO2 (1.9 wt% Pt, ~7.6 wt% W) | 8 | 413 | 76 | 1,3-PrD [ | 5.1 | — | most effective among ZrO2-supported ones | [ |
12 | Pt/W-SBA-15 (3 wt% Pt, W/Si=1/640) | 4 | 423 | 87 | 1,3-PrD [ | 1.7 | — | first report of effective Pt-W catalyst using silica-based support and small W amount | [ |
13 | Pt/WOx/T-Ta2O5 (0.68 wt% Pt, 0.51 wt% W) | 5 | 433 | 87 | 1,3-PrD [ | 19 | — | highest 1,3-PrD formation rate | [ |
14 | Pt/Nb14W3O44 (3 wt% Pt) | 8 | 423 | 100 | 1,3-PrD [ | 17 | 30 | highest 1,3-PrD yield & good activity | [ |
15 | Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 8 | 413 | 100 | 1,3-PrD [ | 2.5 | 6.5 | highest 1,3-PrD yield among catalysts using conventional stable support | [ |
7 | 453 | 100 | 1-PrOH [ | 3.8 | — | overhydrogenolysis of 1-PrOH does not occur | [ | ||
16 | Ru/C (5 wt% Ru) + Amberlyst 15 | 8 | 393 | 79 | 1,2-PrD [ | 0.13 | — | typical system of Ru + acid | [ |
17 | Ru-ReOx/SiO2 (3.2 wt% Ru, 3.6 wt% Re) | 8 | 433 | 52 | 1,2-PrD [ | 20 | — | activity increase and suppression of C-C dissociation by Re; similar catalyst used for 1,2-PrD to mixture of PrOHs | [ |
18 | Ru-MoOx/CNTs (2 wt% Ru, 5 wt% Mo) | 4 | 473 | 47 | 1,2-PrD [ | 39 | — | suppression of C-C dissociation by Mo | [ |
19 | Ru-WOx/C (5 wt% Ru, 2 wt% W) | 5 | 423 | 73 | 1,2-PrD [ | 3.2 | — | very high suppression of C-C dissociation by W | [ |
20 | Rh-ReOx/SiO2 (4 wt% Rh, Re/Rh = 0.5) | 8 | 393 | 100 | 1-PrOH [ | 11 | — | high activity at low temperature; low regioselectivity in diol formation | [ |
Fig. 4. Catalytic performance of the Ir-ReOx/SiO2 catalyst with nominal Ir loading amount varied from 4 wt% to 40 wt%. The Re/Ir ratio of the impregnated precursor amount was 1 (nominal Re/Ir ratio). Reaction conditions: 4 g of glycerol, 2 g of H2O, catalyst amount varied to keep total nominal Ir amount of 31 μmol, 8 MPa, 393 K, 4 h. Reprinted with permission from Ref. [33]. Copyright (2019) Elsevier.
Fig. 5. Glycerol hydrogenolysis over Ir-ReOx catalysts (4 wt% Ir, Re/Ir = 0.25, nominal) on various supports (A), and effect of Ir loading amount (Re/Ir = 0.25, nominal) on glycerol hydrogenolysis (B). Reaction conditions: catalyst amount varied to keep total nominal Ir amount of 31 μmol, 4 g of glycerol, 2 g of H2O, 8 MPa, 393 K, 8 h for (A) or 4 h for (B). Reprinted with permission from Ref. [50]. Copyright 2019, American Chemical Society.
Catalyst (reduction method, reduction temperature/K) | Ir amount /wt% | Re/Ir ratio | DCO/% | dTEM/nm | Coverage a/% | Valence of Ir | Valence of Re | |||
---|---|---|---|---|---|---|---|---|---|---|
XPS | XANES | XPS | XANES | |||||||
Ir-ReOx/SiO2 (G,b 473) | 4 | 0.83d | 16 | 2.0 | 70 | 0 | 0 | 0‒+4 | +2.8‒3.1 | |
Ir-ReOx/SiO2 (G,b 473) | 20 | 0.34d | 18 | — | 47 | — | 0 | — | +2.7 | |
(L,c 473) | 18 | 3.2 | 54 | — | 0 | — | +1.1 | |||
Ir-ReOx/TiO2 (G,b 573) | 4 | 0.30d | 34 | 1.8 | 62 | 0.7 | 0.5 | 3.2 | +2.7 | |
0.24e | 33 | 1.9 | 62 | 0.7 | 0.5 | 3.2 | +3.1 |
Table 2 Summary of characterization results of Ir-ReOx based catalysts after various types of reduction treatment [33,50,66].
Catalyst (reduction method, reduction temperature/K) | Ir amount /wt% | Re/Ir ratio | DCO/% | dTEM/nm | Coverage a/% | Valence of Ir | Valence of Re | |||
---|---|---|---|---|---|---|---|---|---|---|
XPS | XANES | XPS | XANES | |||||||
Ir-ReOx/SiO2 (G,b 473) | 4 | 0.83d | 16 | 2.0 | 70 | 0 | 0 | 0‒+4 | +2.8‒3.1 | |
Ir-ReOx/SiO2 (G,b 473) | 20 | 0.34d | 18 | — | 47 | — | 0 | — | +2.7 | |
(L,c 473) | 18 | 3.2 | 54 | — | 0 | — | +1.1 | |||
Ir-ReOx/TiO2 (G,b 573) | 4 | 0.30d | 34 | 1.8 | 62 | 0.7 | 0.5 | 3.2 | +2.7 | |
0.24e | 33 | 1.9 | 62 | 0.7 | 0.5 | 3.2 | +3.1 |
Catalyst | Ir amount /wt% | Re/Ir ratio | Shells | CN | R/nm |
---|---|---|---|---|---|
Ir-ReOx/SiO2 a | 4 | 0.83 | Re-O | 1.4 | 0.202 |
Re-Ir (or -Re) | 6.2 | 0.268 | |||
Ir-ReOx/SiO2 b | 20 | 0.34 | Re-O | 0.8 | 0.214 |
Re-Ir (or -Re) | 8.6 | 0.268 | |||
Ir-ReOx/TiO2 c | 4 | 0.24 | Re-O | 0.6 | 0.211 |
Re-Ir (or -Re) | 8.8 | 0.264 |
Table 3 Curve fitting results of Re L3-edge EXAFS spectra of Ir-ReOx catalysts after glycerol hydrogenolysis [33,50,66].
Catalyst | Ir amount /wt% | Re/Ir ratio | Shells | CN | R/nm |
---|---|---|---|---|---|
Ir-ReOx/SiO2 a | 4 | 0.83 | Re-O | 1.4 | 0.202 |
Re-Ir (or -Re) | 6.2 | 0.268 | |||
Ir-ReOx/SiO2 b | 20 | 0.34 | Re-O | 0.8 | 0.214 |
Re-Ir (or -Re) | 8.6 | 0.268 | |||
Ir-ReOx/TiO2 c | 4 | 0.24 | Re-O | 0.6 | 0.211 |
Re-Ir (or -Re) | 8.8 | 0.264 |
Fig. 6. TEM images and model structures of Ir-ReOx catalysts. Reprinted with permission from Refs. [33,50,66]. Copyright 2012, American Chemical Society; Copyright 2019, Elsevier; Copyright 2019, American Chemical Society.
Catalyst | Re/Ir ratio | Condition | Reaction order |
---|---|---|---|
4 wt%-Ir Ir-ReOx/SiO2 | 0.83 | 20 wt%-67 wt% glycerol aq., 8 MPa H2, 393 K | ~0.0 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | ~1.0 (H2) | ||
20 wt%-Ir Ir-ReOx/SiO2 | 0.34 | 20 wt%-67 wt% glycerol aq., 8 MPa H2, 393 K | 0.03 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | 1.1 (H2) | ||
4 wt%-Ir Ir-ReOx/TiO2 | 0.24 | 40 wt%-80 wt% glycerol aq., 8 MPa H2, 393 K | 0.2 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | 0.9 (H2) |
Table 4 Reaction orders in glycerol hydrogenolysis over Ir-ReOx-based catalysts [32,33,50].
Catalyst | Re/Ir ratio | Condition | Reaction order |
---|---|---|---|
4 wt%-Ir Ir-ReOx/SiO2 | 0.83 | 20 wt%-67 wt% glycerol aq., 8 MPa H2, 393 K | ~0.0 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | ~1.0 (H2) | ||
20 wt%-Ir Ir-ReOx/SiO2 | 0.34 | 20 wt%-67 wt% glycerol aq., 8 MPa H2, 393 K | 0.03 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | 1.1 (H2) | ||
4 wt%-Ir Ir-ReOx/TiO2 | 0.24 | 40 wt%-80 wt% glycerol aq., 8 MPa H2, 393 K | 0.2 (glycerol) |
67 wt% glycerol aq., 2-8 MPa H2, 393 K | 0.9 (H2) |
Fig. 7. Reaction mechanism of glycerol hydrogenolysis to 1,3-PrD over Ir-ReOx catalysts via direct concerted hydride attack mechanism [48,67,72,73]. Reprinted with permission from Ref. [41]. Copyright 2013, Elsevier.
Fig. 8. Reaction mechanisms of glycerol hydrogenolysis to 1,3-PrD over Ir-ReOx catalysts via direct dehydroxylation and protonation-dehydration mechanism [75] (A), and dehydration-hydrogenation mechanism on the Ir-Re alloy surface [76] (B). Reprinted with permission from Refs. [75,76]. Copyright 2019, American Chemical Society, and Copyright 2022, Royal Society of Chemistry, respectively.
Catalyst | Substrate | t/h | Conv./% | C-based main products (selectivity/%) |
---|---|---|---|---|
Irc-r-FeOx/TiO2 a | 1,2-PrD | 24 | 14.5 | 2-PrOH (56.0), 1-PrOH (24.6) |
72 b | 97.1 | 2-PrOH (54.2), 1-PrOH (22.8) | ||
Glycerol | 24 | 29.2 | 1,2-PrD (79.4), 2-PrOH (1.5), 1-PrOH (8.6) | |
42 b | 93.7 | 1,2-PrD (66.7), 2-PrOH (4.7), 1-PrOH (13.1) | ||
144 | >99.9 | 2-PrOH (30.4), 1-PrOH (32.1) | ||
Ir-FeOx/BN | 1,2-PrD | 24 | 11.5 | 2-PrOH (62.6), 1-PrOH (17.0) |
Glycerol | 24 | 28.5 | 1,2-PrD (83.9), 2-PrOH (1.0), 1-PrOH (8.6) |
Table 5 Hydrogenolysis of glycerol and 1,2-PrD over TiO2- and BN-supported Ir-FeOx catalysts (5 wt% Ir, Fe/Ir = 0.25) [36,37].
Catalyst | Substrate | t/h | Conv./% | C-based main products (selectivity/%) |
---|---|---|---|---|
Irc-r-FeOx/TiO2 a | 1,2-PrD | 24 | 14.5 | 2-PrOH (56.0), 1-PrOH (24.6) |
72 b | 97.1 | 2-PrOH (54.2), 1-PrOH (22.8) | ||
Glycerol | 24 | 29.2 | 1,2-PrD (79.4), 2-PrOH (1.5), 1-PrOH (8.6) | |
42 b | 93.7 | 1,2-PrD (66.7), 2-PrOH (4.7), 1-PrOH (13.1) | ||
144 | >99.9 | 2-PrOH (30.4), 1-PrOH (32.1) | ||
Ir-FeOx/BN | 1,2-PrD | 24 | 11.5 | 2-PrOH (62.6), 1-PrOH (17.0) |
Glycerol | 24 | 28.5 | 1,2-PrD (83.9), 2-PrOH (1.0), 1-PrOH (8.6) |
Catalyst | Fe/Ir ratio | Particle size/nm | Valence of Ir (XANES) | Valence of Fe (XANES) Fe3+/Fe2+/Fe0 | Shells | CN | R/nm | |
---|---|---|---|---|---|---|---|---|
dXRD | dTEM | |||||||
Irc-r-FeOx/TiO2 | 0.25 | 3.4 | 3.4 | 0.7 | 9/26/65 | Fe-O | 1.4 | 0.197 |
Fe-Ir | 4.8 | 0.263 | ||||||
1 | 3.6 | 3.4 | 1.9 | 21/54/25 | Fe-O | 2.3 | 0.199 | |
Fe-Ir | 2.5 | 0.268 | ||||||
Fe-(O)-Fe | 1.4 | 0.287 | ||||||
Ir-FeOx/BN | 0.25 | 2.4 | 1.7 | 0.6 | 1/23/76 | Fe-O | 0.4 | 0.201 |
Fe-Ir | 5.1 | 0.262 |
Table 6 Summary of characterization results of Ir-FeOx (5 wt% Ir) catalysts after the reaction [36,37].
Catalyst | Fe/Ir ratio | Particle size/nm | Valence of Ir (XANES) | Valence of Fe (XANES) Fe3+/Fe2+/Fe0 | Shells | CN | R/nm | |
---|---|---|---|---|---|---|---|---|
dXRD | dTEM | |||||||
Irc-r-FeOx/TiO2 | 0.25 | 3.4 | 3.4 | 0.7 | 9/26/65 | Fe-O | 1.4 | 0.197 |
Fe-Ir | 4.8 | 0.263 | ||||||
1 | 3.6 | 3.4 | 1.9 | 21/54/25 | Fe-O | 2.3 | 0.199 | |
Fe-Ir | 2.5 | 0.268 | ||||||
Fe-(O)-Fe | 1.4 | 0.287 | ||||||
Ir-FeOx/BN | 0.25 | 2.4 | 1.7 | 0.6 | 1/23/76 | Fe-O | 0.4 | 0.201 |
Fe-Ir | 5.1 | 0.262 |
Fig. 10. TEM images and EDX analysis, and model structures of Irc-r-FeOx/TiO2 (A) [36], and Ir-FeOx/BN (B) during the reaction [37], 5 wt% Ir, Fe/Ir = 0.25 for both catalysts. Reprinted with permission from Refs. [36,37]. Copyright 2022, American Chemical Society, and Copyright 2023, American Chemical Society, respectively.
Fig. 12. Model structures of Pt/WOx/T-Ta2O5 (0.68 wt% Pt, 0.51 wt% W) (A) [58] and Pt/Nb14W3O44 (3 wt% Pt) (B). Reprinted with permission from Ref. [59]. Copyright 2023, John Wiley and Sons. Note: Pt-WOx interaction is enhanced by atomically-dispersed Ptδ+ supported on WOx-modified tantalum oxide with high surface concentration (A), and unique crystallographic shear structure of W-O-Nb (B).
W/Pt ratio | Shells | CN | R/nm | Conv. a /% | Selectivity to 1,3-PrD a/% |
---|---|---|---|---|---|
0.063 | W-Pt (or -W) | 5.5 | 0.269 | <2 | — |
W-O | 1.7 | 0.193 | |||
W=O | 1.4 | 0.173 | |||
0.13 | W-Pt (or -W) | 3.6 | 0.268 | 9 | 56 |
W-O | 1.3 | 0.193 | |||
W=O | 1.5 | 0.173 | |||
0.25 | W-Pt (or -W) | 2.8 | 0.264 | 56 | 65 |
W-O | 1.6 | 0.195 | |||
W=O | 1.3 | 0.175 | |||
0.5 | W-Pt (or -W) W-O W=O | 2.7 | 0.263 | 8 | 56 |
2.3 | 0.198 | ||||
1.4 | 0.179 | ||||
1 | W-Pt (or -W) | 2.4 | 0.264 | <2 | — |
W-O | 2.6 | 0.198 | |||
W=O | 1.4 | 0.178 |
Table 7 Curve fitting results of W L3-edge EXAFS spectra of Pt-WOx/SiO2 (4 wt% Pt) catalysts after C-O hydrogenolysis reaction [89].
W/Pt ratio | Shells | CN | R/nm | Conv. a /% | Selectivity to 1,3-PrD a/% |
---|---|---|---|---|---|
0.063 | W-Pt (or -W) | 5.5 | 0.269 | <2 | — |
W-O | 1.7 | 0.193 | |||
W=O | 1.4 | 0.173 | |||
0.13 | W-Pt (or -W) | 3.6 | 0.268 | 9 | 56 |
W-O | 1.3 | 0.193 | |||
W=O | 1.5 | 0.173 | |||
0.25 | W-Pt (or -W) | 2.8 | 0.264 | 56 | 65 |
W-O | 1.6 | 0.195 | |||
W=O | 1.3 | 0.175 | |||
0.5 | W-Pt (or -W) W-O W=O | 2.7 | 0.263 | 8 | 56 |
2.3 | 0.198 | ||||
1.4 | 0.179 | ||||
1 | W-Pt (or -W) | 2.4 | 0.264 | <2 | — |
W-O | 2.6 | 0.198 | |||
W=O | 1.4 | 0.178 |
Fig. 13. Proposed structures of Pt-WOx/SiO2 catalysts (4 wt% Pt) tuned by altering W amount. Reprinted with permission from Ref. [89] with modification of showing the active site. Copyright 2021, Elsevier.
Gas/solvent (reaction system) | α-C ![]() | β-C ![]() | ||
---|---|---|---|---|
-CH2- | -CHD- | -CH2- | -CHD- | |
D2/H2O (A) | 100% | n.d. | 100% | n.d. |
H2/D2O (B) | 0% | 100% | 19% | 81% |
Table 8 Deuterium incorporation of 1,2-pentanediol (1,2-PeD) HDO over Pt-WOx/TiO2 catalyst [92].
Gas/solvent (reaction system) | α-C ![]() | β-C ![]() | ||
---|---|---|---|---|
-CH2- | -CHD- | -CH2- | -CHD- | |
D2/H2O (A) | 100% | n.d. | 100% | n.d. |
H2/D2O (B) | 0% | 100% | 19% | 81% |
Re/Ru ratio | Shells | CN | R/nm | Average valence of Re (XANES) | ReOx species |
---|---|---|---|---|---|
0.5 | Re-Ru | 2.6 | 0.267 | +1.0 | ReOx clusters (major), Re metal particles (minor) |
Re-Re | 2.1 | 0.273 | |||
Re-O | 1.7 | 0.204 | |||
1 | Re-Ru | 1.7 | 0.265 | +1.8 | ReOx clusters (minor), Re metal particles (major) |
Re-Re | 8.0 | 0.273 | |||
Re-O | 1.4 | 0.199 |
Table 9 Curve fitting results of Re L3-edge EXAFS spectra of Ru-ReOx/SiO2 (5 wt% Ru) catalyst during the reaction [98].
Re/Ru ratio | Shells | CN | R/nm | Average valence of Re (XANES) | ReOx species |
---|---|---|---|---|---|
0.5 | Re-Ru | 2.6 | 0.267 | +1.0 | ReOx clusters (major), Re metal particles (minor) |
Re-Re | 2.1 | 0.273 | |||
Re-O | 1.7 | 0.204 | |||
1 | Re-Ru | 1.7 | 0.265 | +1.8 | ReOx clusters (minor), Re metal particles (major) |
Re-Re | 8.0 | 0.273 | |||
Re-O | 1.4 | 0.199 |
Fig. 15. Model structures (A) and STEM images and EDX analysis (B) of Ru-ReOx/SiO2 during the reaction [15,98]. Reprinted with permission from Refs. [15,98]. Copyright 2022, American Chemical Society, and Copyright 2023, John Wiley and Sons, respectively.
Fig. 16. Proposed reaction mechanism of 1,2-PrD hydrogenolysis to propanols over Ru-ReOx/SiO2. Reprinted with permission from Ref. [98]. Copyright 2022, American Chemical Society.
Fig. 17. Reaction mechanism of glycerol hydrogenolysis to 1,2-PrD over Ru-WOx/C. Reprinted with permission from Ref. [65]. Copyright 2022, Royal Society of Chemistry.
Substrate | Catalyst | Temp./K | P(H2) /MPa | Conv. /% | Selectivity (main product)/% | Average rate mmoltarget product gcatal.‒1 h‒1 | Ref. |
---|---|---|---|---|---|---|---|
Erythritol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir=1) | 373 | 8 | 47 | 25 (1,4-BuD) | 0.26 | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir=1) | 373 | 8 | 97 | 35 (1-BuOH) | 0.19 | ||
Ir-ReOx/TiO2 (4 wt% Ir, Re/Ir=0.25) | 373 | 8 | 36 | 33 (1,4-BuD) | 0.81 | ||
Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 413 | 8 | 99 | 54 (1,4-BuD) | 0.22 | [ | |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 453 | 7 | 100 | 57 (1-BuOH) | 0.39 | ||
Pt/W/Ti-SBA-15 (4 wt% Pt, W/Pt=0.25) | 463 | 5 | 94 | 35 (1,4-BuD) | 0.27 | [ | |
Irc-r-FeOx/TiO2 (5 wt% Ir, Fe/Ir=0.25) | 453 | 8 | 100 | 30 (2,3-BuD) | 0.03 | [ | |
Ir-FeOx/BN (5 wt% Ir, Fe/Ir=0.25) | 453 | 8 | 100 | 32 (2,3-BuD) | 0.03 | [ | |
Ir-Fe-Mo/BN (20 wt% Ir, Fe/Ir=0.13, Mo/Ir=0.08) | 453 | 8 | >99 | 36 (2,3-BuD) | 1.0 | [ | |
Ru-ReOx/TiO2 (P25, 2 wt% Ru, Re/Ru=1) | 473 | 2.5 | 100 | 55.0 (diols mixture) | 1.3 | [ | |
Rh-ReOx/ZrO2 (4 wt% Rh, Re/Rh=0.5) | 473 | 12 | 80 | 29 (diols mixture) | 1.5 | [ | |
Ru-MoOx/Mo2C (2 wt% Ru, Mo/Ru=1) | 513 | 4 | 100 | 38 (BuOHs mixture) | 0.12 | [ | |
1,4-AHERY | Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 413 | 8 | 100 | 54 (1,3-BuD) | 0.16 | [ |
Rh-MoOx/SiO2 (4 wt% Rh, Mo/Rh=0.13) | 393 | 8 | 100 | 51 (2-BuOH) | 1.0 | [ |
Table 10 Bimetallic catalysts for hydrogenolysis of erythritol and 1,4-anhydroerythritol (1,4-AHERY).
Substrate | Catalyst | Temp./K | P(H2) /MPa | Conv. /% | Selectivity (main product)/% | Average rate mmoltarget product gcatal.‒1 h‒1 | Ref. |
---|---|---|---|---|---|---|---|
Erythritol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir=1) | 373 | 8 | 47 | 25 (1,4-BuD) | 0.26 | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir=1) | 373 | 8 | 97 | 35 (1-BuOH) | 0.19 | ||
Ir-ReOx/TiO2 (4 wt% Ir, Re/Ir=0.25) | 373 | 8 | 36 | 33 (1,4-BuD) | 0.81 | ||
Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 413 | 8 | 99 | 54 (1,4-BuD) | 0.22 | [ | |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 453 | 7 | 100 | 57 (1-BuOH) | 0.39 | ||
Pt/W/Ti-SBA-15 (4 wt% Pt, W/Pt=0.25) | 463 | 5 | 94 | 35 (1,4-BuD) | 0.27 | [ | |
Irc-r-FeOx/TiO2 (5 wt% Ir, Fe/Ir=0.25) | 453 | 8 | 100 | 30 (2,3-BuD) | 0.03 | [ | |
Ir-FeOx/BN (5 wt% Ir, Fe/Ir=0.25) | 453 | 8 | 100 | 32 (2,3-BuD) | 0.03 | [ | |
Ir-Fe-Mo/BN (20 wt% Ir, Fe/Ir=0.13, Mo/Ir=0.08) | 453 | 8 | >99 | 36 (2,3-BuD) | 1.0 | [ | |
Ru-ReOx/TiO2 (P25, 2 wt% Ru, Re/Ru=1) | 473 | 2.5 | 100 | 55.0 (diols mixture) | 1.3 | [ | |
Rh-ReOx/ZrO2 (4 wt% Rh, Re/Rh=0.5) | 473 | 12 | 80 | 29 (diols mixture) | 1.5 | [ | |
Ru-MoOx/Mo2C (2 wt% Ru, Mo/Ru=1) | 513 | 4 | 100 | 38 (BuOHs mixture) | 0.12 | [ | |
1,4-AHERY | Pt-WOx/SiO2 (4 wt% Pt, W/Pt=0.25) | 413 | 8 | 100 | 54 (1,3-BuD) | 0.16 | [ |
Rh-MoOx/SiO2 (4 wt% Rh, Mo/Rh=0.13) | 393 | 8 | 100 | 51 (2-BuOH) | 1.0 | [ |
Fig. 18. Scheme for HDO of erythritol and 1,4-anhydroerythritol over bimetallic catalysts. Reprinted with permission from Ref. [113]. Copyright 2020, John Wiley and Sons.
Substrate | Catalyst | Temp. /K | P(H2) /MPa | Additive /solvent | Conv. /% | Yield (main product) /%-C | Ref. |
---|---|---|---|---|---|---|---|
Xylitol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | 413 | 8 | HZSM-5/n-dodecane+ water | 100 | 18 (1-PeOH), 19 (2-/3-PeOHs) | [ |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt = 0.25) | 453 | 7 | None/water | 100 | 30 (1-PeOH), 9 (2-PeOH), 20 (3-PeOH) | [ | |
Ru-MoOx/Mo2C (2 wt% Ru, Mo/Ru = 1) | 513 | 4 | None/water | 100 | 28 (1-PeOH), 7 (2-PeOH), 1 (3-PeOH) | [ | |
Ru/MnOx/C | 473 | 6 | None/water | 80 | 22 (glycols), 10 (glycerol) | [ | |
Xylan | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | 413 | 6 | H2SO4/n-dodecane+ water | 97 | <1 (1-PeOH), 14 (2-PeOH), 18 (3-PeOH) | [ |
Table 11 Bimetallic catalysts for hydrogenolysis of xylitol and xylan to alcohols.
Substrate | Catalyst | Temp. /K | P(H2) /MPa | Additive /solvent | Conv. /% | Yield (main product) /%-C | Ref. |
---|---|---|---|---|---|---|---|
Xylitol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | 413 | 8 | HZSM-5/n-dodecane+ water | 100 | 18 (1-PeOH), 19 (2-/3-PeOHs) | [ |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt = 0.25) | 453 | 7 | None/water | 100 | 30 (1-PeOH), 9 (2-PeOH), 20 (3-PeOH) | [ | |
Ru-MoOx/Mo2C (2 wt% Ru, Mo/Ru = 1) | 513 | 4 | None/water | 100 | 28 (1-PeOH), 7 (2-PeOH), 1 (3-PeOH) | [ | |
Ru/MnOx/C | 473 | 6 | None/water | 80 | 22 (glycols), 10 (glycerol) | [ | |
Xylan | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | 413 | 6 | H2SO4/n-dodecane+ water | 97 | <1 (1-PeOH), 14 (2-PeOH), 18 (3-PeOH) | [ |
Substrate | Catalyst | Temp. /K | P(H2) /MPa | Additive /solvent | Yield (main product)/%-C | Ref. |
---|---|---|---|---|---|---|
Sorbitol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | 413 | 8 | None/n-dodecane+water | 36 (3-HxOH), 8 (2-HxOH), <1(1-HxOH) | [ |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt = 0.25) | 453 | 8 | None/water | 36 (3-HxOH), 12 (2-HxOH), 12 (1-HxOH) | [ | |
Ru-MoOx/CMK-3 (2 wt% Ru, Mo/Ru = 1) | 523 | 4 | None/water | 7 (HxOHs), 17 (1,6-HxD) | [ | |
Ru-WOx/CNT (4 wt% Ru, W/Ru = 0.25) | 478 | 5 | Ca(OH)2/water | 35 (1,2-PrD), 26 (EG) | [ | |
Cellulose | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | 413 | 8 | H2SO4/n-decane+water | 40 (3-HxOH), 18 (2-HxOH), 2 (1-HxOH) | [ |
Ru-WOx/Biochar (5 wt% Ru, W/Ru = 4.4) | 493 | 3 | None/water | 69 (EG) | [ | |
Ru-WOx/HZSM-5 (5 wt% Ru, W/Ru = 2.8) | 508 | 3 | None/water | 77 (Ethanol) | [ | |
Pt/WOx (2 wt% Pt) | 518 | 6 | None/water | 30 (Ethanol) | [ | |
MoOx/Pt/WOx (2 wt% Pt, Mo/Pt = 0.1) | 518 | 6 | None/water | 43 (Ethanol) |
Table 12 Bimetallic catalysts for hydrogenolysis of sorbitol and cellulose to alcohols.
Substrate | Catalyst | Temp. /K | P(H2) /MPa | Additive /solvent | Yield (main product)/%-C | Ref. |
---|---|---|---|---|---|---|
Sorbitol | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | 413 | 8 | None/n-dodecane+water | 36 (3-HxOH), 8 (2-HxOH), <1(1-HxOH) | [ |
Pt-WOx/SiO2 (4 wt% Pt, W/Pt = 0.25) | 453 | 8 | None/water | 36 (3-HxOH), 12 (2-HxOH), 12 (1-HxOH) | [ | |
Ru-MoOx/CMK-3 (2 wt% Ru, Mo/Ru = 1) | 523 | 4 | None/water | 7 (HxOHs), 17 (1,6-HxD) | [ | |
Ru-WOx/CNT (4 wt% Ru, W/Ru = 0.25) | 478 | 5 | Ca(OH)2/water | 35 (1,2-PrD), 26 (EG) | [ | |
Cellulose | Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | 413 | 8 | H2SO4/n-decane+water | 40 (3-HxOH), 18 (2-HxOH), 2 (1-HxOH) | [ |
Ru-WOx/Biochar (5 wt% Ru, W/Ru = 4.4) | 493 | 3 | None/water | 69 (EG) | [ | |
Ru-WOx/HZSM-5 (5 wt% Ru, W/Ru = 2.8) | 508 | 3 | None/water | 77 (Ethanol) | [ | |
Pt/WOx (2 wt% Pt) | 518 | 6 | None/water | 30 (Ethanol) | [ | |
MoOx/Pt/WOx (2 wt% Pt, Mo/Pt = 0.1) | 518 | 6 | None/water | 43 (Ethanol) |
Catalyst | Substrate | Temp./K | P(H2)/MPa | Additive/solvent | Yield (main product)/%-C | Ref. |
---|---|---|---|---|---|---|
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | xylitol | 413 | 8 | HZSM-5/n-dodecane+water | 96 (n-pentane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | xylan | 463 | 6 | H2SO4+HZSM-5/n-dodecane+water | 70 (n-pentane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | sorbitol | 413 | 8 | HZSM-5/n-dodecane+water | 95 (n-hexane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | cellulose | 453 | 6 | H2SO4/n-decane+water | 84 (n-hexane) | [ |
Ir-WOx/SiO2 (4 wt% Ir, W/Ir = 0.06) | cellulose | 483 | 8 | HZSM-5/n-dodecane+water | 85 (C6 alkanes) | [ |
Table 13 Production of pentane and hexane over Ir-based bimetallic catalysts.
Catalyst | Substrate | Temp./K | P(H2)/MPa | Additive/solvent | Yield (main product)/%-C | Ref. |
---|---|---|---|---|---|---|
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | xylitol | 413 | 8 | HZSM-5/n-dodecane+water | 96 (n-pentane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | xylan | 463 | 6 | H2SO4+HZSM-5/n-dodecane+water | 70 (n-pentane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 1) | sorbitol | 413 | 8 | HZSM-5/n-dodecane+water | 95 (n-hexane) | [ |
Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 2) | cellulose | 453 | 6 | H2SO4/n-decane+water | 84 (n-hexane) | [ |
Ir-WOx/SiO2 (4 wt% Ir, W/Ir = 0.06) | cellulose | 483 | 8 | HZSM-5/n-dodecane+water | 85 (C6 alkanes) | [ |
Catalyst | M'/M | Yield /% (based on C6 ring) | ||||||
---|---|---|---|---|---|---|---|---|
C15 cycloalkane | C7,C8,C9 cycloalkanes | C7,C8,C9 oxygenates (1O) | Aromatics | S-C15 oxygenates (1O) | US-C15 oxygenates (1O) | C15 oxygenates (2O) | ||
Ru-ReOx/SiO2 | 0.5 | 93 | 5 | 1 | 1 | 0 | 0 | 0 |
Pt-ReOx/SiO2 | 0.5 | 0 | 0 | 0 | <1 | <1 | <1 | <1 |
Pd-ReOx/SiO2 | 0.5 | <1 | 0 | <1 | 1 | <1 | <1 | <1 |
Ir-ReOx/SiO2 | 0.5 | <1 | 0 | <1 | <1 | <1 | <1 | <1 |
Rh-ReOx/SiO2 | 0.5 | 32 | 2 | 1 | <1 | 3 | 1 | <1 |
Ru-MoOx/SiO2 | 0.5 | 2 | 1 | 2 | <1 | 5 | 1 | 1 |
Ru-WOx/SiO2 | 0.5 | 6 | 2 | 2 | <1 | 6 | <1 | 1 |
Ru/SiO2 | 0 | <1 | 1 | 3 | 1 | 1 | 1 | 1 |
Ru-ReOx/SiO2 | 0.05 | 31 | 4 | 2 | <1 | 45 | 0 | 4 |
Ru-ReOx/SiO2 | 0.13 | 73 | 5 | 1 | <1 | 18 | 0 | <1 |
Ru-ReOx/SiO2 | 0.25 | 90 | 5 | 1 | <1 | 1 | 0 | <1 |
Ru-ReOx/SiO2 | 1 | 46 | 3 | 2 | <1 | 44 | 0 | <1 |
ReOx/SiO2 | — | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Ru/SiO2+ReOx/SiO2 | — | 1 | <1 | 1 | <1 | 1 | 2 | 1 |
Table 15 Catalyst screening for HDO of PC [15].
Catalyst | M'/M | Yield /% (based on C6 ring) | ||||||
---|---|---|---|---|---|---|---|---|
C15 cycloalkane | C7,C8,C9 cycloalkanes | C7,C8,C9 oxygenates (1O) | Aromatics | S-C15 oxygenates (1O) | US-C15 oxygenates (1O) | C15 oxygenates (2O) | ||
Ru-ReOx/SiO2 | 0.5 | 93 | 5 | 1 | 1 | 0 | 0 | 0 |
Pt-ReOx/SiO2 | 0.5 | 0 | 0 | 0 | <1 | <1 | <1 | <1 |
Pd-ReOx/SiO2 | 0.5 | <1 | 0 | <1 | 1 | <1 | <1 | <1 |
Ir-ReOx/SiO2 | 0.5 | <1 | 0 | <1 | <1 | <1 | <1 | <1 |
Rh-ReOx/SiO2 | 0.5 | 32 | 2 | 1 | <1 | 3 | 1 | <1 |
Ru-MoOx/SiO2 | 0.5 | 2 | 1 | 2 | <1 | 5 | 1 | 1 |
Ru-WOx/SiO2 | 0.5 | 6 | 2 | 2 | <1 | 6 | <1 | 1 |
Ru/SiO2 | 0 | <1 | 1 | 3 | 1 | 1 | 1 | 1 |
Ru-ReOx/SiO2 | 0.05 | 31 | 4 | 2 | <1 | 45 | 0 | 4 |
Ru-ReOx/SiO2 | 0.13 | 73 | 5 | 1 | <1 | 18 | 0 | <1 |
Ru-ReOx/SiO2 | 0.25 | 90 | 5 | 1 | <1 | 1 | 0 | <1 |
Ru-ReOx/SiO2 | 1 | 46 | 3 | 2 | <1 | 44 | 0 | <1 |
ReOx/SiO2 | — | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Ru/SiO2+ReOx/SiO2 | — | 1 | <1 | 1 | <1 | 1 | 2 | 1 |
Fig. 22. Reaction network for the HDO of PC to cycloalkanes [15]. (A) Reaction profile of PC over the Ru-ReOx/SiO2 (Re/Ru ratio of 0.5). Catalyst of 0.05 g, PC pellets of 0.5 g, cyclohexane of 15 mL, 453 K, initial H2 of 3 MPa. Reaction profiles of diphenyl carbonate (B), phenol (C) and cyclohexanol (D) over the catalyst. Catalyst: 0.05 g, substrate: 0.23?0.46 × 10?2 mol, cyclopentane of 15 mL, 408 K, initial N2 of 0.5 MPa at room temperature, N2 + H2 of 4.5 MPa at 408 K. (E) Reaction pathway for the conversion of PC to cycloalkanes. Reprinted with permission from Ref. [15]. Copyright 2023, John Wiley and Sons.
Fig. 23. HDO of different real plastic wastes and their mixtures over Ru-ReOx/SiO2 + HZSM-5. Reprinted with permission from Ref. [15]. Copyright 2023, John Wiley and Sons.
Fig. 26. Proposed reaction pathway for HDO of 5,5’-(furan-2-ylmethylene)bis(2-methylfuran) into branched alkanes over bimetallic catalysts. Reprinted with permission from Ref. [40]. Copyright 2019, American Chemical Society.
Catalyst | Re/M ratio | Conv. /% | Selectivity /%-C | |||
---|---|---|---|---|---|---|
n-C18 alkane | n-C17 alkane | n-C16 alkane | Stearyl alcohol | |||
ReOx/SiO2 | — | 6 | 6 | 1 | 0 | 93 |
Ir-ReOx/SiO2 | 3 | 100 | 94 | 6 | <1 | 0 |
Ru-ReOx/SiO2 | 3 | 100 | 52 | 41 | 4 | 0 |
Pd-ReOx/SiO2 | 3 | 15 | 2 | 3 | 0 | 95 |
Pt-ReOx/SiO2 | 3 | 11 | 12 | 4 | <1 | 84 |
Rh-ReOx/SiO2 | 3 | 48 | 7 | 22 | <1 | 70 |
Ir-ReOx/SiO2 | 0.5 | 25 | 28 | 8 | <1 | 64 |
Ir-ReOx/SiO2 | 1 | 32 | 27 | 7 | <1 | 66 |
Ir-ReOx/SiO2 | 2 | 70 | 43 | 5 | <1 | 52 |
Ir-ReOx/SiO2 | 2.5 | 99 | 47 | 5 | <1 | 47 |
Rh-ReOx/SiO2 | 0.5 | 5 | 5 | 47 | 0 | 48 |
Table 16 HDO of stearic acid over different catalysts [70].
Catalyst | Re/M ratio | Conv. /% | Selectivity /%-C | |||
---|---|---|---|---|---|---|
n-C18 alkane | n-C17 alkane | n-C16 alkane | Stearyl alcohol | |||
ReOx/SiO2 | — | 6 | 6 | 1 | 0 | 93 |
Ir-ReOx/SiO2 | 3 | 100 | 94 | 6 | <1 | 0 |
Ru-ReOx/SiO2 | 3 | 100 | 52 | 41 | 4 | 0 |
Pd-ReOx/SiO2 | 3 | 15 | 2 | 3 | 0 | 95 |
Pt-ReOx/SiO2 | 3 | 11 | 12 | 4 | <1 | 84 |
Rh-ReOx/SiO2 | 3 | 48 | 7 | 22 | <1 | 70 |
Ir-ReOx/SiO2 | 0.5 | 25 | 28 | 8 | <1 | 64 |
Ir-ReOx/SiO2 | 1 | 32 | 27 | 7 | <1 | 66 |
Ir-ReOx/SiO2 | 2 | 70 | 43 | 5 | <1 | 52 |
Ir-ReOx/SiO2 | 2.5 | 99 | 47 | 5 | <1 | 47 |
Rh-ReOx/SiO2 | 0.5 | 5 | 5 | 47 | 0 | 48 |
Fig. 27. Time courses for stearic acid (A) and methyl stearate (B) conversions over Ir-ReOx/SiO2 (4 wt% Ir, Re/Ir = 3) catalyst. Reaction conditions: 0.05 g of catalyst, 0.25 g of substrate, 10 mL of cyclohexane, 2 MPa H2, 453 K. Reprinted with permission from Ref. [70]. Copyright 2018, John Wiley and Sons.
Fig. 29. Effect of reaction temperature (A) and H2 pressure (B) on HDO of lauric acid over Ru-MoOx/TiO2 (5.3 wt% Ru, Mo/Ru = 0.5) catalyst. Reaction conditions: 0.065 g of catalyst, 3.2 mmol of lauric acid, 5 mL of solvent (2-PrOH/H2O at 4, volume ratio), 7 h, 4 MPa H2 for (A), 583 K for (B). Reprinted with permission from Ref. [198]. Copyright 2022, Royal Society of Chemistry.
Substrate | Catalyst | Reaction conditions | Conv. /% | Amine yield /% | Ref. |
---|---|---|---|---|---|
Hexanamide | Ru-WOx/MgAl2O4 (4 wt% Ru, W/Ru = 8) | 473 K, 5 MPa H2, 0.5 MPa NH3, 16 h, cyclopentyl methyl ether (CPME) solvent | >99 | 83 | [ |
CyCONH2 | >99 | 80 | |||
CyCONH2 | Ru-WOx/SiO2 (2 wt% Ru, 1 wt% W) | 433 K, 5 MPa H2, 12 h, 1,2-dimethoxyethane (DME) solvent | 94 | 78 | [ |
Ru-MoOx/SiO2 (2 wt% Ru, 0.2 wt% Mo) | 433 K, 5 MPa H2, 12 h, DME solvent | 90 | 73 | [ | |
Rh-MoOx/SiO2 (4 wt% Rh, Mo/Rh = 1) +CeO2 | 413 K, 8 MPa H2, 4 h, DME solvent | >95 | 63 | [ |
Table 17 Typical bimetallic catalysts for the HDO of selected primary amides.
Substrate | Catalyst | Reaction conditions | Conv. /% | Amine yield /% | Ref. |
---|---|---|---|---|---|
Hexanamide | Ru-WOx/MgAl2O4 (4 wt% Ru, W/Ru = 8) | 473 K, 5 MPa H2, 0.5 MPa NH3, 16 h, cyclopentyl methyl ether (CPME) solvent | >99 | 83 | [ |
CyCONH2 | >99 | 80 | |||
CyCONH2 | Ru-WOx/SiO2 (2 wt% Ru, 1 wt% W) | 433 K, 5 MPa H2, 12 h, 1,2-dimethoxyethane (DME) solvent | 94 | 78 | [ |
Ru-MoOx/SiO2 (2 wt% Ru, 0.2 wt% Mo) | 433 K, 5 MPa H2, 12 h, DME solvent | 90 | 73 | [ | |
Rh-MoOx/SiO2 (4 wt% Rh, Mo/Rh = 1) +CeO2 | 413 K, 8 MPa H2, 4 h, DME solvent | >95 | 63 | [ |
|
[1] | 曲虹宇, 胡文德, 李相呈, 徐睿, 韩笑, 李俊杰, 陆怡卿, 叶迎春, 王传明, 王振东, 杨为民. 具有超低镍负载的Ni-C3N4高效催化5-羟甲基糠醛氢解制2,5-二甲基呋喃[J]. 催化学报, 2024, 60(5): 253-261. |
[2] | 曾严, 王慧, 杨惠茹, 隽超, 李丹, 温晓东, 张帆, 邹吉军, 彭冲, 胡常伟. 镍纳米粒子耦合氧空位高效催化转化棕榈酸制备烷烃[J]. 催化学报, 2023, 47(4): 229-242. |
[3] | 褚大旺, 辛莹莹, 赵晨. 玉米秸秆连续氢解制备生物乙醇[J]. 催化学报, 2021, 42(5): 844-854. |
[4] | 汪东东, 龚万兵, 张继方, 韩苗苗, 陈春, 张云霞, 汪国忠, 张海民, 赵惠军. 限域NiCo合金纳米颗粒高效催化生物质衍生物水相加氢脱氧[J]. 催化学报, 2021, 42(11): 2027-2037. |
[5] | 王佳, 杨曼, 王爱琴. Pt-W催化剂上甘油选择性氢解制备1,3-丙二醇研究进展[J]. 催化学报, 2020, 41(9): 1311-1319. |
[6] | 雷念, 苗治理, 刘菲, 王华, 潘晓丽, 王爱琴, 张涛. 甘油氢解反应中Pt/WO3/Al2O3催化剂的失活行为[J]. 催化学报, 2020, 41(8): 1261-1267. |
[7] | 林凯, 赵晨. 亲水性介孔碳负载Ru纳米粒子催化海藻油低温水相加氢脱氧制烷烃[J]. 催化学报, 2020, 41(8): 1174-1185. |
[8] | 周茂祥, 杨曼, 杨小峰, 赵晓晨, 孙磊, 邓伟侨, 王爱琴, 李隽, 张涛. 单原子催化剂活化氢气:Pt1/WOx催化氢解反应[J]. 催化学报, 2020, 41(3): 524-532. |
[9] | Nhung N. Duong, Darius Aruho, Bin Wang, Daniel E. Resasco. 不同Rh表面上苯甲醚加氢脱氧[J]. 催化学报, 2019, 40(11): 1721-1730. |
[10] | 杨超军, 张帆, 雷念, 杨曼, 刘菲, 苗治理, 孙永南, 赵晓晨, 王爱琴. Au促进Pt/WO3催化甘油氢解制1,3-丙二醇[J]. 催化学报, 2018, 39(8): 1366-1372. |
[11] | 李闯, 何博, 凌雨, 曾志荣, 梁长海. Zr-Al复合氧化物负载Pt催化甘油氢解制正丙醇[J]. 催化学报, 2018, 39(6): 1121-1128. |
[12] | 杨曼, 赵晓晨, 任煜京, 王佳, 雷念, 王爱琴, 张涛. Pt/Nb-WOx催化甘油选择氢解制1,3-丙二醇:Nb掺杂抑制WOx的过度还原[J]. 催化学报, 2018, 39(6): 1027-1037. |
[13] | 杨俊, 常煜鹏, 戴卫理, 武光军, 关乃佳, 李兰冬. 双金属Cr-In/H-SSZ-13催化剂上CH4选择催化还原NO[J]. 催化学报, 2018, 39(5): 1004-1011. |
[14] | 丁豆豆, 徐兴妍, 田鹏飞, 刘向林, 徐晶, 韩一帆. Sb对Pd基催化剂用于常压直接合成H2O2的促进效应[J]. 催化学报, 2018, 39(4): 673-681. |
[15] | 王豪杰, 陈春, 张海民, 汪国忠, 赵惠军. 乙酰丙酸选择性加氢合成γ-戊内酯中高效和可循环使用的Ni3Fe NPs@C双金属催化剂[J]. 催化学报, 2018, 39(10): 1599-1607. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||