催化学报 ›› 2024, Vol. 62: 108-123.DOI: 10.1016/S1872-2067(24)60049-5
收稿日期:
2024-04-03
接受日期:
2024-05-04
出版日期:
2024-07-18
发布日期:
2024-07-10
通讯作者:
电子信箱: 基金资助:
Xiaomin Rena, Huicong Daib, Xin Liuc, Qihua Yangb,*()
Received:
2024-04-03
Accepted:
2024-05-04
Online:
2024-07-18
Published:
2024-07-10
Contact:
E-mail: About author:
Qihua Yang (Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University) received her Ph.D. degree in Inorganic Chemistry from Northeast Normal University in 1997. She did postdoctoral research in State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics (China), LCOMS-CNRS/CPE (France), and Toyota Central R&D Labs. Inc. (Japan). She was promoted to full professor in 2003. Her research interests are mainly focused on the synthesis of hybrid porous materials for heterogeneous asymmetric catalysis and nano-catalysis. She is the author or co-author of more than 200 peer-reviewed scientific publications.
Supported by:
摘要:
负载型金属催化剂(SMC)广泛用于多相加氢反应. 然而, 在大多数报道的双/多位点SMC中, 由于不同活性位点之间几何和电子结构性质的相互影响, 往往难以仅调整某一特定位点的性质而不波及其他位点. 这种限制导致了一个常见的现象: 在提高反应选择性的同时, 往往伴随着催化剂活性的降低. 空间隔离的双位点催化剂因其两个活性位点之间没有直接接触, 使得实现活性位点的独立调控成为可能. 此外, 双位点SMC还有助于研究每个活性位点的功能, 以阐明这些位点在催化反应中的协同机制. 因此, 本文系统地总结了位点孤立的SMC的制备及其在选择性氢化反应中的最新进展.
本文从用于加氢反应的孤立位点SMC的分类入手, 综述了两种不同金属纳米粒子、单原子和金属纳米粒子、多孔材料和金属纳米粒子以及金属络合物和金属纳米粒子的协同作用, 探讨了氢溢流效应在双孤立位点SMC体系协同机制中的重要作用. 系统介绍了氢溢流的载体、距离及溢流的活性氢物种加氢能力. 深入探讨了不同双孤立位点SMC的催化活性和选择性提高的经典案例及内在协同机制. 还讨论了双孤立位点催化剂合成中所面临的机遇和挑战. 在此基础上, 对双孤立位点SMC的发展进行了展望. 通过对具有不同孤立位点SMC在选择性加氢反应中的案例分析, 总结了孤立位点SMC的协同作用机制. 具体而言, 两个孤立位点各司其职, 分别用于氢气解离和不饱和基团活化或者在串联反应中独立催化不同的反应过程, 以氢溢流为桥梁, 实现这两个过程的联动, 最终提升了催化性能. 在选择性氢化反应之外, 双孤立位点协同概念在氧化反应、光催化体系和电催化体系也有重要作用. 相比传统催化剂, 孤立位点SMC的构筑更具有挑战性. 随着表征手段的日益发展, 孤立位点SMC催化剂结构得到了更为精确测定. 双孤立位点SMC的协同体系有望拓展至均多相催化剂耦合以及与酶催化耦合实现生物-催化的协同. 在SMC催化剂制备方面需要发展更有效的方法控制孤立位点的密度及空间距离. 孤立位点催化体系的拓展和优化将加速新型高效选择性氢化催化剂的开发, 促进更明确的构效关系的研究, 同时也为拓展孤立位点SMC在其他催化体系的应用奠定基础.
综上所述, 本文综述了基于金属-金属、金属-单原子、金属-多孔材料以及金属-金属配合物的双孤立位点SMC的构筑及在选择性加氢反应中的性能研究. 已有的研究表明, 双孤立位点的协同效应显著提升了催化活性和选择性. 此外, 对具有明确结构的双孤立位点SMC的构效关系研究揭示了其协同机制. 尽管双孤立位点SMC在精准制备和表征方面仍面临挑战, 但随着催化剂合成策略及更先进表征手段的发展, 高效稳定的双孤立位点SMC将在选择氢化领域得到更广泛的应用.
任小敏, 戴慧聪, 刘鑫, 杨启华. 多位点隔离的金属催化剂用于高效选择性加氢[J]. 催化学报, 2024, 62: 108-123.
Xiaomin Ren, Huicong Dai, Xin Liu, Qihua Yang. Development of efficient catalysts for selective hydrogenation through multi-site division[J]. Chinese Journal of Catalysis, 2024, 62: 108-123.
Fig. 1. (a) Illustration of catalytic mechanism on Au/TiO2/Pt sandwich nanostructures. (b) Transmission electron microscopy (TEM) image of a TiO2 nanoparticle monolayer. (c) Elemental mapping of the Au/TiO2/Pt sandwich nanostructure using a focused ion beam (FIB) system. Scale bar: 50 nm. Reprinted with permission from Ref. [53]. Copyright 2024, John Wiley and Sons.
Fig. 2. (a) Schematic illustration of the catalysts. Semi-sectional and cross-sectional views of the different catalysts prepared by ALD. The yellow and black balls represent Pt and CoOx, respectively. (b) The possible enhancement mechanism for the selective catalytic atomic layer deposition (CALD) hydrogenation reaction. Reprinted with permission from Ref. [54]. Copyright 2019, Springer Nature.
Fig. 3. (a) Reaction network of the hydrogenation of nitrobenzene. (b) Schematic illustration of four catalysts, including Ru/Pd/MCMOS, Pd/MCMOS, Ru/MCMOS, and Ru-Pd/DSNs. (c) Product distributions of the sequential hydrogenation over different catalysts. (d) Schematic illustration for neighboring metal-assisted hydrogenation over Ru/Pd/MCMOS. Reprinted with permission from Ref. [55]. Copyright 2021, Springer Nature.
Fig. 4. (a) Atomic-resolution HAADF-STEM images of Au@1ML-Pt. (b) Comparison of the rates of p-CAN formation on platinum, gold, AuPt alloy, and Au@Pt core-shell catalysts. (c) Highlight of the shifts in platinum 4f7/2 binding energy with platinum particle size and composition normalized to that of bulk platinum. (d) Arrhenius plots of Au@1ML-Pt and 2.7 nm-Pt catalysts for the hydrogenation of p-CNB. (e) Stability testing of the catalyst. Reprinted with permission from Ref. [56]. Copyright 2021, Springer Nature.
Fig. 5. (a) Illustration of Pd1/TiO2, PdNPs/TiO2, and Pd1+NPs/TiO2. (b) Kinetic curves of Pd1/TiO2 (green circle), PdNPs/TiO2 (blue square), and Pd1+NPs/TiO2 (magenta triangle) at 25 °C under 1 atm H2 in the MAP hydrogenation reaction. (c) Proposed catalytic mechanism of the synergistic catalyst Pd1+NPs/TiO2. Reprinted with permission from Ref. [70]. Copyright 2020, Springer Nature.
Fig. 6. (a) Catalytic performance of Ir/CMK before and after SCN added. (b) lsotopic effect in quinoline. (c) Proposed synergistic mechanism of Ir1+NPs/CMK catalyst for the hydrogenation of quinoline. Reprinted with permission from Ref. [71]. Copyright 2022, Springer Nature.
Fig. 7. (a) Reaction process of carbonyl reductive amination and the synergistic reaction mechanism of Co1+NPs catalyzing the process. (b) Time-yield plots in reductive amination of cyclohexanone over Co@C-N(800). Reaction conditions: 1 mmol cyclohexanone, 3 mL methanol, 35 °C, Co@C-N(800), 50 mg (29.2 mol% Co), 1.4 MPa H2 and 0.6 MPa NH3. Reprinted with permission from Ref. [73]. Copyright 2022, Royal Society of Chemistry.
Fig. 8. (a) Catalytic performance of cyclohexanol dehydrogenation reaction over Rh1/ND@G, Rh1+n/ND@G, and Rhp/ND@G catalysts. (b) Metal-normalized activity of cyclohexanol-to-cyclohexanone (above) and cyclohexanone-to-phenol (below) steps over the catalysts Rh1/ND@G, Rh1+n/ND@G, and Rhp/ND@G. Reprinted with permission from Ref. [72]. Copyright 2022, American Chemical Society.
Fig. 9. (a) Illustration depicting the CAL hydrogenation reaction. (b) Comparison of turnover frequency (TOF) values for PdSA/g-C3N4, PdSA+C/g-C3N4, and PdNPs/g-C3N4. (c) Stability tests results. (d) Diagram presenting the reaction mechanism. Reprinted with permission from Ref. [74]. Copyright 2024, American Chemical Society.
Fig. 10. (a) Schematic diagram illustrating the catalytic mechanism of dual single-atom catalyst Ir1Mo1/TiO2 cooperatively catalyzing the highly selective hydrogenation of nitrostyrene to aminostyrene. Reprinted with permission from Ref. [75]. Copyright 2021, American Chemical Society. (b) Mechanism diagram of catalytic hydrogenation of p-chloronitrobenzene over Pt1Fe1/ND catalyst. Reprinted with permission from Ref. [76]. Copyright 2023, John Wiley and Sons.
Fig. 11. (a) Schematic illustration of the synthesis and structure of Ru/TiO2@TP-TTA and 1. (b) Conversion rates of NAD+ hydrogenation with various catalysts. (c) Rational mechanism for NAD(P)+ hydrogenation over homogeneous-heterogeneous coupling catalysts. Reprinted with permission from Ref. [80]. Copyright 2022, Springer Nature. (d) Schematic representation of the fabrication of an integrated core-shell nanoreactor comprising Ni NPs and Rh composites. (e) Comparative activities of aldehyde ketone reductase (AKR) in the presence of free and immobilized Rh complexes during the asymmetric hydrogenation of acetophenone. Reprinted with permission from Ref. [81]. Copyright 2023, John Wiley and Sons.
Fig. 12. (a) Schematic diagram of the structure of Ru catalyst modified with different organic ligands. (b) The catalytic performance of Ru NPs in hydrogenation of BA using hexane as solvent. (c) The calculated H-bonding energies between BA and PPh3, NH2, and Si-OH, respectively. Reprinted with permission from Ref. [87]. Copyright 2019, John Wiley and Sons.
Fig. 13. (a) Synthesis of Py-COF and Be-COF. (b) Conversion and phenyl ethanol selectivity in acetophenone (AP) hydrogenation over Pd NPs catalyst. (c) Reaction profiles of Pd NPs in AP hydrogenation. (d) Reaction mechanism of Pd/ Py-COF catalyzed AP hydrogenation. Reprinted with permission from Ref. [89]. Copyright 2022, Springer Nature.
Fig. 14. (a,b) Reaction kinetics of various Pt/COF/SiO2 catalysts in acetophenone (AP) hydrogenation. (c) Illustration of the catalytic mechanism of Pt/COF/SiO2 facilitating the hydrogenation of AP to produce alcohol. Reprinted with permission from Ref. [90]. Copyright 2022, American Chemical Society.
|
[1] | 张红红, 王治伟, 隗陆, 刘雨溪, 戴洪兴, 邓积光. 催化法治理挥发性有机物污染的研究进展[J]. 催化学报, 2024, 61(6): 71-96. |
[2] | 聂翼飞, 颜红萍, 鹿苏微, 张宏伟, 齐婷婷, 梁诗景, 江莉龙. 理论指导构建Cu-O-Ti-Ov活性位点及其高效电催化还原硝酸根研究[J]. 催化学报, 2024, 59(4): 293-302. |
[3] | 王毅, 王硕, 付云凡, 桑佳琪, 臧一鹏, 魏鹏飞, 李合肥, 汪国雄, 包信和. CuPc/FeNC双组分催化剂协同催化硝酸盐转化为氨[J]. 催化学报, 2024, 56(1): 104-113. |
[4] | 刘诗瑶, 巩玉同, 杨晓, 张楠楠, 刘会斌, 梁长海, 陈霄. 具有富电子镍位点的耐酸金属间化合物CaNi2Si2催化剂用于不饱和有机酸酐/酸的水相加氢[J]. 催化学报, 2023, 50(7): 260-272. |
[5] | 张锋伟, 郭河芳, 刘萌萌, 赵阳, 洪峰, 李静静, 董正平, 乔波涛. 表面应力介导的碳基Pt纳米催化剂用于硝基芳烃的高选择性加氢[J]. 催化学报, 2023, 48(5): 195-204. |
[6] | 刘华, 康磊磊, 王华, 蒋齐可, 刘晓艳, 王爱琴. 硫酸化氧化锆负载的Ru单原子催化甲烷直接转化制甲醇[J]. 催化学报, 2023, 46(3): 64-71. |
[7] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[8] | 黎晓阳, 曹宇飞, 熊佳容, 李隽, 肖海, 李昕阳, 苟清强, 戈钧. 酶-金属单原子复合催化剂在一锅法生物-化学反应的应用[J]. 催化学报, 2023, 44(1): 139-145. |
[9] | 高广, 赵泽伦, 王嘉, 席永杰, 孙鹏, 李福伟. PtReOx/TiO2金属-氧化物-载体相互作用增强手性羧酸选择性加氢[J]. 催化学报, 2022, 43(8): 2034-2044. |
[10] | 王凯, 林祥丰, 李倩, 刘䶮, 李灿. 钯(0)/铜(I)协同催化脱羧不对称4+2环加成反应合成四环香豆素[J]. 催化学报, 2022, 43(7): 1812-1817. |
[11] | 王梦茹, 王奕, 牟效玲, 林荣和, 丁云杰. 1,3-丁二烯选择性加氢催化剂的设计策略以及构效关系[J]. 催化学报, 2022, 43(4): 1017-1041. |
[12] | 蒋国星, 张龙海, 邹文午, 张伟锋, 王秀军, 宋慧宇, 崔志明, 杜丽. 精确可控串联策略触发高效的氧还原活性[J]. 催化学报, 2022, 43(4): 1042-1048. |
[13] | 谭亚其, 尹艳丽, 曹珊珊, 赵筱薇, 渠桂荣, 江智勇. 氢原子转移与手性氢键协同催化共轭加成—不对称质子化构建氮杂芳烃α-三级立体中心[J]. 催化学报, 2022, 43(3): 558-563. |
[14] | 王可, 何仕辉, 林云志, 陈旬, 戴文新, 付贤智. 氧空位修饰的暴露TiO2{001}的Ru/TiO2增强光热协同CO2甲烷化活性和稳定性[J]. 催化学报, 2022, 43(2): 391-402. |
[15] | 田栋, 孙鑫, 曹珊珊, 王二萌, 尹艳丽, 赵筱薇, 江智勇. 乙烯基氮杂芳烃参与的不对称分子间[2 + 2]光环加成反应[J]. 催化学报, 2022, 43(10): 2732-2742. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||