催化学报 ›› 2024, Vol. 62: 108-123.DOI: 10.1016/S1872-2067(24)60049-5

• 综述 • 上一篇    下一篇

多位点隔离的金属催化剂用于高效选择性加氢

任小敏a, 戴慧聪b, 刘鑫c, 杨启华b,*()   

  1. a大连交通大学环境与化学工程学院, 辽宁大连 116028
    b浙江师范大学化学与材料科学学院, 先进催化材料教育部重点实验室, 固体表面反应化学省重点实验室, 浙江金华 321004
    c中国科学院大连化学物理研究所, 催化基础国家重点实验室, 辽宁大连 116023
  • 收稿日期:2024-04-03 接受日期:2024-05-04 出版日期:2024-07-18 发布日期:2024-07-10
  • 通讯作者: 电子信箱: qhyang@zjnu.cn (杨启华).
  • 基金资助:
    国家自然科学基金(22272164);国家自然科学基金(22332002);国家自然科学基金(22302027);浙江省创新创业领军人才引进项目(2022R01007);大连市青年科技之星(2022RQ030)

Development of efficient catalysts for selective hydrogenation through multi-site division

Xiaomin Rena, Huicong Daib, Xin Liuc, Qihua Yangb,*()   

  1. aCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
    bKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    cState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2024-04-03 Accepted:2024-05-04 Online:2024-07-18 Published:2024-07-10
  • Contact: E-mail: qhyang@zjnu.cn (Q. Yang).
  • About author:Qihua Yang (Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University) received her Ph.D. degree in Inorganic Chemistry from Northeast Normal University in 1997. She did postdoctoral research in State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics (China), LCOMS-CNRS/CPE (France), and Toyota Central R&D Labs. Inc. (Japan). She was promoted to full professor in 2003. Her research interests are mainly focused on the synthesis of hybrid porous materials for heterogeneous asymmetric catalysis and nano-catalysis. She is the author or co-author of more than 200 peer-reviewed scientific publications.
  • Supported by:
    National Natural Science Foundation of China(22272164);National Natural Science Foundation of China(22332002);National Natural Science Foundation of China(22302027);Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2022R01007);Foundation of Dalian Youth Science and Technology Star Project(2022RQ030)

摘要:

负载型金属催化剂(SMC)广泛用于多相加氢反应. 然而, 在大多数报道的双/多位点SMC中, 由于不同活性位点之间几何和电子结构性质的相互影响, 往往难以仅调整某一特定位点的性质而不波及其他位点. 这种限制导致了一个常见的现象: 在提高反应选择性的同时, 往往伴随着催化剂活性的降低. 空间隔离的双位点催化剂因其两个活性位点之间没有直接接触, 使得实现活性位点的独立调控成为可能. 此外, 双位点SMC还有助于研究每个活性位点的功能, 以阐明这些位点在催化反应中的协同机制. 因此, 本文系统地总结了位点孤立的SMC的制备及其在选择性氢化反应中的最新进展.

本文从用于加氢反应的孤立位点SMC的分类入手, 综述了两种不同金属纳米粒子、单原子和金属纳米粒子、多孔材料和金属纳米粒子以及金属络合物和金属纳米粒子的协同作用, 探讨了氢溢流效应在双孤立位点SMC体系协同机制中的重要作用. 系统介绍了氢溢流的载体、距离及溢流的活性氢物种加氢能力. 深入探讨了不同双孤立位点SMC的催化活性和选择性提高的经典案例及内在协同机制. 还讨论了双孤立位点催化剂合成中所面临的机遇和挑战. 在此基础上, 对双孤立位点SMC的发展进行了展望. 通过对具有不同孤立位点SMC在选择性加氢反应中的案例分析, 总结了孤立位点SMC的协同作用机制. 具体而言, 两个孤立位点各司其职, 分别用于氢气解离和不饱和基团活化或者在串联反应中独立催化不同的反应过程, 以氢溢流为桥梁, 实现这两个过程的联动, 最终提升了催化性能. 在选择性氢化反应之外, 双孤立位点协同概念在氧化反应、光催化体系和电催化体系也有重要作用. 相比传统催化剂, 孤立位点SMC的构筑更具有挑战性. 随着表征手段的日益发展, 孤立位点SMC催化剂结构得到了更为精确测定. 双孤立位点SMC的协同体系有望拓展至均多相催化剂耦合以及与酶催化耦合实现生物-催化的协同. 在SMC催化剂制备方面需要发展更有效的方法控制孤立位点的密度及空间距离. 孤立位点催化体系的拓展和优化将加速新型高效选择性氢化催化剂的开发, 促进更明确的构效关系的研究, 同时也为拓展孤立位点SMC在其他催化体系的应用奠定基础.

综上所述, 本文综述了基于金属-金属、金属-单原子、金属-多孔材料以及金属-金属配合物的双孤立位点SMC的构筑及在选择性加氢反应中的性能研究. 已有的研究表明, 双孤立位点的协同效应显著提升了催化活性和选择性. 此外, 对具有明确结构的双孤立位点SMC的构效关系研究揭示了其协同机制. 尽管双孤立位点SMC在精准制备和表征方面仍面临挑战, 但随着催化剂合成策略及更先进表征手段的发展, 高效稳定的双孤立位点SMC将在选择氢化领域得到更广泛的应用.

关键词: 选择性加氢, 协同催化, 孤立位点, 多位点分离, 负载金属催化剂

Abstract:

Heterogeneous hydrogenation with supported metal catalyst is one of the efficient methods for producing fine chemicals. Hydrogenation reactions for fine chemical production often use reactants with more than one unsaturated bond or involve cascade multiple-step reactions, facing the dilemma of activity and selectivity. The dual-site or multi-site catalysts have been employed to solve this dilemma, but the entanglement at different sites generally cannot improve selectivity without reducing activity. In this review, we will introduce recent progresses in the construction of dual-site supported metal catalysts with division of active site, which may break the tradeoff between activity and selectivity in selective hydrogenation considering that each active sites can be modulated separately without causing the property variation of other sites. In addition, such catalysts contribute to the basic understanding of their structure-activity relationship and provide a theoretical basis for the development of efficient hydrogenation catalysts for fine chemical production.

Key words: Selective hydrogenation, Synergistic catalysis, Isolated site, Multi-site division, Structure-activity relationship