催化学报 ›› 2025, Vol. 73: 289-299.DOI: 10.1016/S1872-2067(25)64703-6

• 论文 • 上一篇    下一篇

太阳能驱动的光热协同催化甲烷裂解零碳排放制备氢气

郑依涵a,c,1, 王宇欣a,c,1, 李瑞涛a,c, 杨皓然a,c, 代元元e, 牛强e, 林铁军a,b,c, 龚坤a,e(), 钟良枢a,b,c,d()   

  1. a中国科学院上海高等研究院 中国科学院低碳转化科学与工程重点实验室, 上海 201210
    b中国科学院上海高等研究院 低碳催化与二氧化碳利用国家重点实验室, 上海 201210
    c中国科学院大学, 北京 100049
    d上海科技大学物质科学与技术学院, 上海 201210
    e内蒙古鄂尔多斯电力冶金集团有限公司国家企业技术中心, 内蒙古鄂尔多斯 016064
  • 收稿日期:2025-02-19 接受日期:2025-04-07 出版日期:2025-06-18 发布日期:2025-06-12
  • 通讯作者: *电子信箱: gongkun@sari.ac.cn (龚坤),zhongls@sari.ac.cn (钟良枢).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2021YFF0500702);上海市自然科学基金(22JC1404200);上海市学术/技术带头人项目(20XD1404000);国家自然科学基金(U22B20136);国家自然科学基金(22293023);内蒙古科技重大专项(2021ZD0042)

CO2-free hydrogen production from solar-driven photothermal catalytic decomposition of methane

Yihan Zhenga,c,1, Yuxin Wanga,c,1, Ruitao Lia,c, Haoran Yanga,c, Yuanyuan Daie, Qiang Niue, Tiejun Lina,b,c, Kun Gonga,e(), Liangshu Zhonga,b,c,d()   

  1. aCAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
    bState Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
    cUniversity of Chinese Academy of Sciences, Beijing 100049, China
    dSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
    eNational Enterprise Technology Center,Inner Mongolia Erdos Electric Power and Metallurgy Group Co., Ltd. Ordos, Erdos 016064, Inner Mongolia, China
  • Received:2025-02-19 Accepted:2025-04-07 Online:2025-06-18 Published:2025-06-12
  • Contact: *E-mail: gongkun@sari.ac.cn (K. Gong),zhongls@sari.ac.cn (L. Zhong).
  • About author:1 These authors contributed equally to this work.
  • Supported by:
    National Key R&D Program of China(2021YFF0500702);Natural Science Foundation of Shanghai(22JC1404200);Program of Shanghai Academic/Technology Research Leader(20XD1404000);Natural Science Foundation of China(U22B20136);Natural Science Foundation of China(22293023);Science and Technology Major Project of Inner Mongolia(2021ZD0042);Youth Innovation Promotion Association of CAS

摘要:

氢气因其高能量密度且燃烧产物无碳排放特性, 被视为未来清洁能源的重要载体. 传统工业制氢技术如甲烷蒸汽重整反应伴随大量CO2排放, 难以满足可持续发展需求. 甲烷催化裂解制氢(CDM, CH4 → C + 2H2)通过将碳元素固化为高附加值碳材料, 可实现大规模零碳排放制氢. 然而, 甲烷分子高解离能垒导致CDM反应往往需要高于800 °C的反应温度. 因此, 开发甲烷温和条件下高效裂解制氢技术具有重要意义. 本研究创新性地将太阳能光热催化应用于CDM反应, 通过构建Ni-CeO2界面实现了甲烷温和条件下高效制氢.

本文提出了一种太阳能驱动的光热协同催化体系, 实现甲烷温和条件裂解生产氢气, 且无CO2排放. 采用水热—还原法制备了Ni/CeO2催化剂, 通过X射线衍射、透射电子显微镜、X射线光电子能谱及拉曼光谱等表征手段证实Ni纳米颗粒与CeO2间的金属—载体强相互作用, 诱导CeO2晶格畸变生成丰富的Ni-CeO2界面. 紫外-可见-红外谱结果表明, Ni-CeO2界面在300-2500 nm波段表现出宽谱光吸收特性. 光电流响应、光致发光光谱、电化学阻抗谱及时间分辨光致发光光谱结果表明, Ni-CeO2界面显著增强了载流子浓度并抑制电子—空穴对复合. 性能评价结果表明, 在5.28 W cm-2的全光谱辐照下, 该体系可在300 °C实现204.6 mmol g-1 h-1的氢气产率, 较相同温度暗场条件下提升了约2个数量级. 动力学分析结果表明, 光热协同催化显著降低CDM反应的表观活化能, 其数值从热催化模式的87.3降至11.2 kJ mol-1, 降幅高达87.2%. 通过对比不同波长下的反应性能揭示了光热协同作用机制: 红外波段通过光热转换提供局域热能, 而紫外-可见光激发的电子-空穴对可有效活化C-H键, 二者协同作用大幅提升反应效率. 原位顺磁共振谱和原位漫反射傅立叶变换红外光谱实验证实, 光照条件下Ni-CeO2界面生成的·CH3自由基数量显著增加, 且空穴(h+)在甲烷活化中起主导作用.

综上, 本研究为太阳能驱动的CO2零排放制氢提供了创新性解决方案, 展示了太阳能驱动的光热协同催化在清洁能源领域的巨大潜力. 通过优化催化剂结构和设计新型光热反应器, 有望进一步提升反应稳定性和规模化应用潜力. 该工作不仅推动了甲烷转化技术的发展, 也为可再生能源与化石资源的高效耦合利用提供了重要参考.

关键词: 零碳排放氢气, 氢气制备, 光热催化, 甲烷裂解, 甲烷转化

Abstract:

CO2-free H2 refers to H2 production process without CO2 emission, which is a promising clean energy in the future. Catalytic decomposition of methane (CDM) is a competitive technology to produce CO2-free H2 with large-scale. However, CDM reaction is highly endothermic and is kinetically and thermodynamically unfavorable, which typically requires a harsh reaction temperature above 800 °C. In this work, solar-driven photothermal catalytic decomposition of methane was firstly introduced to produce CO2-free H2 relying solely on solar energy as the driving force. A high H2 yield of 204.6 mmol g-1 h-1 was observed over Ni-CeO2 interface under photothermal conditions, along with above 87% reduction in the apparent activation energy (11.2 vs. 87.3 kJ mol-1) when comparing with the traditional thermal catalysis. Further studies suggested that Ni/CeO2 catalyst enhanced optical absorption in visible-infrared region to ensure the heat energy for methane decomposition. The generated electrons and holes participated in the redox process of photo-driven CDM reaction with enhanced separation ability of hot carriers excited by ultraviolet-visible light, which lowered activation energy and improved the photothermal catalytic activity. This work provides a promising photothermal catalytic strategy to produce CO2-free H2 under mild conditions.

Key words: CO2-free hydrogen, Hydrogen production, Photothermal catalysis, Methane decomposition, Methane conversion