催化学报 ›› 2025, Vol. 73: 311-321.DOI: 10.1016/S1872-2067(25)64704-8

• 论文 • 上一篇    下一篇

具有交错p-n异质结的光增强型Co单原子分散催化剂: 揭示其在锌-空气电池和燃料电池中的优异双功能性能

王昭娣a, 张杨a, 张军选c, 徐能能a(), 芦拓a, 庄碧艳a, 刘桂成d(), 梁宇喆c(), 雷浩e, 田丙伦e, 乔锦丽a,b()   

  1. a东华大学环境科学与工程学院, 先进纤维材料全国重点实验室, 上海 201620, 中国
    b上海市污染控制与生态安全研究所, 上海 200092, 中国
    c东国大学物理学院, 首尔, 韩国
    d华北电力大学新型储能技术北京实验室, 能源动力与机械工程学院, 北京 102206, 中国
    e协氢(上海)新能源科技有限公司, 上海 200333, 中国
  • 收稿日期:2025-02-20 接受日期:2025-04-08 出版日期:2025-06-18 发布日期:2025-06-12
  • 通讯作者: *电子信箱: nengnengxu@dhu.edu.cn (徐能能),gcliu@ncepu.edu.cn (刘桂成),wyang@dongguk.edu (梁宇喆),qiaojl@dhu.edu.cn (乔锦丽).
  • 基金资助:
    国家重点研发计划(2022YFE0138900);国家自然科学基金(21972017);上海市科委“科技创新行动计划”基础研究领域(19JC1410500);上海扬帆计划(22YF1400700);上海市教育发展基金会;上海市教育委员会晨光计划(22CGA37)

Photo-enhanced Co single-atom catalyst with a staggered p-n heterojunction: unraveling its high oxygen catalytic performance in zinc-air batteries and fuel cells

Zhaodi Wanga, Yang Zhanga, Junxuan Zhangc, Nengneng Xua(), Tuo Lua, Biyan Zhuanga, Guicheng Liud(), Woochul Yangc(), Hao Leie, Binglun Tiane, Jinli Qiaoa,b()   

  1. aState Key Laboratory of Advanced Fiber Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    bShanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
    cDepartment of Physics, Dongguk University, Seoul 04620, Republic of Korea
    dBeijing Laboratory of New Energy Storage Technology, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
    eHiTS (Shanghai) Hydrogen Power Technology Co., Ltd, Shanghai 200333, China
  • Received:2025-02-20 Accepted:2025-04-08 Online:2025-06-18 Published:2025-06-12
  • Contact: *E-mail: nengnengxu@dhu.edu.cn (N. Xu),gcliu@ncepu.edu.cn (G. Liu),wyang@dongguk.edu (W. Yang),qiaojl@dhu.edu.cn (J. Qiao).
  • Supported by:
    National Key Research and Development Program of China(2022YFE0138900);National Natural Science Foundation of China(21972017);“Scientific and Technical Innovation Action Plan” Basic Research Field of Shanghai Science and Technology Committee(19JC1410500);Shanghai Sailing Program(22YF1400700);Chenguang Program of Shanghai Education the Development Foundation;Shanghai Municipal Education Commission(22CGA37)

摘要:

随着化石燃料的枯竭和环境污染日益严重, 开发清洁高效的能源存储与转换技术迫在眉睫. 在众多候选技术中, 可充电的锌空气电池(ZABs)因其高理论能量密度(1084 Wh kg-1)、低成本及环境友好特性备受关注, 被认为是大规模储能的重要候选技术. 质子交换膜燃料电池(PEMFCs)凭借高效、零排放的优势, 在能源转换领域也展现出巨大潜力. 然而, ZABs和PEMFCs的发展均受到氧还原反应(ORR)和析氧反应(OER)缓慢动力学的限制, 其关键瓶颈在于目前依赖的Pt基催化剂不仅成本高昂, 而且存在耐久性不足的问题. 光增强双功能催化剂通过利用光能降低反应过电位, 为突破这一瓶颈提供了新思路. 本研究通过构建g-C3N4@Co-N/MPC异质结催化剂, 不仅克服了传统催化剂的活性与稳定性方面的局限, 还为光电协同催化机制提供了新的解决方案, 对推动可再生能源技术的发展具有重要意义.

本文创新性地采用高能球磨法将g-C3N4与Co-N掺杂分级多孔碳(Co-N/MPC)复合, 构建了具有p-n异质结结构的光增强型双功能催化剂. 通过原子级分散的Co-Nx活性位点与p-n异质结的协同作用, 实现了以下突破: (1) Co-N/MPC载体具有超过800 m2 g-1的比表面积和分级孔道结构, 显著提升了活性位点密度和物质传质效率; (2) g-C3N4的引入不仅有效抑制Co原子的团聚, 并与Co-N/MPC形成的异质结更通过内置电场促进了光生载流子的分离, 使ORR/OER过电位差(ΔE)降至0.8864 V. 该催化剂直接作为空气电极应用于ZABs和H2-空气燃料电池中, 可分别实现850.7和411 mW cm-2的峰值功率密度功率, 并在250 h循环后仍保持优异稳定性. 机理研究表明, 性能提升归因于Co-N4位点的高本征活性、分级孔道对传质的优化以及异质结界面上的内置电场对电荷分离的促进作用.

综上, 本工作为设计高效稳定的光-电协同催化剂提供了新策略, 通过原子级活性位点设计与异质结工程的结合, 不仅解决了传统催化剂的活性与稳定性难题, 更为开发高性能光增强型能量存储和转换体系开创新的路径.

关键词: 单原子Co, 分级多孔碳, 光增强, p-n异质结, 氧催化反应

Abstract:

The sluggish kinetics of the oxygen reduction reaction (ORR) and high over potential of oxygen evolution reaction (OER) are big challenges in the development of high-performance zinc-air batteries (ZABs) and fuel cells. In this work, we report a rational design and a simple fabrication strategy of a photo-enhanced Co single-atom catalyst (SAC) comprising g-C3N4 coupled with cobalt-nitrogen-doped hierarchical mesoporous carbon (Co-N/MPC), forming a staggered p-n heterojunction that effectively improves charge separation and enhances electrocatalytic activity. The incorporation of Co SACs and g-C3N4 synergistically optimizes the photogenerated electron-hole pair separation, significantly boosting the intrinsic ORR-OER duplex activity. Under illumination, g-C3N4@Co-N/MPC exhibits an outstanding ORR half-wave potential (E1/2) of 0.841 V (vs. RHE) in 0.1 mol L-1 KOH and a low OER overpotential of 497.4 mV (vs. RHE) at 10 mA cm-2 in 1 mol L-1 KOH. Notably, the catalyst achieves an exceptional peak power density of 850.7 mW cm-2 in ZABs and of 411 mW cm-2 even in H2-air fuel cell. In addition, g-C3N4@Co-N/MPC-based ZABs also show remarkable cycling stability exceeding 250 h. The advanced photo-induced charge separation at the p-n heterojunction facilitates faster electron transfer kinetics, and the mass transport owing to hierarchical mesoporous structure of Co-N-C, thereby reducing the overpotential and enhancing the overall energy conversion efficiency. This work provides a new perspective on designing next-generation of single-atom dispersed oxygen reaction catalysts, paving the way for high-performance photo-enhanced energy storage and conversion systems.

Key words: Co single-atom, Hierarchical mesoporous carbon, Photo-enhancement, p-n Heterojunction, Oxygen catalytic reaction