催化学报 ›› 2025, Vol. 73: 322-333.DOI: 10.1016/S1872-2067(25)64712-7

• 论文 • 上一篇    下一篇

PtCu纳米枝晶催化剂及其增强质子交换膜燃料电池稳定性研究

李晨浩a,b,c, 王昊c,e(), 王卫卫c, 白烁c, 公忠彬e, 桑勤勤e, 张雨晴c, 霍锋c,e, 刘艳荣c,d,e()   

  1. a中国科学技术大学稀土学院, 安徽合肥 230026
    b中国科学院赣江创新研究院, 江西赣州 341119
    c中国科学院过程工程研究所绿色过程与工程重点实验室, 介科学与工程全国重点实验室, 固态电池及储能过程北京市重点实验室, 北京 100190
    d中国科学院大学化学工程学院, 北京 100049
    e河南大学能源科学与技术学院, 龙子湖新能源实验室, 河南郑州 450000
  • 收稿日期:2025-02-05 接受日期:2025-04-02 出版日期:2025-06-18 发布日期:2025-06-12
  • 通讯作者: *电子信箱: haowang@ipe.ac.cn (王昊),yrliu@ipe.ac.cn (刘艳荣).
  • 基金资助:
    国家重点研发计划(2023YFE0108200);国家重点研发计划(2022YFB3807501);国家自然科学基金(22308356);国家自然科学基金(22278402);河南省重点研发计划(231111241800);河南省自然科学基金(252300421193);中国科学院稳定支持基础研究领域青年团队计划(YSBR-050);河南省中科科技成果转移转化中心开放课题(2024147);内蒙古自治区“揭榜挂帅”重大示范工程(2024JBGS0001);中国科学院过程工程研究所前沿基础研究项目(QYJC-2023-03)

PtCu nano-dendrites with enhanced stability in proton exchange membrane fuel cells

Chenhao Lia,b,c, Hao Wangc,e(), Weiwei Wangc, Shuo Baic, Zhongbin Gonge, Qinqin Sange, Yuqing Zhangc, Feng Huoc,e, Yanrong Liuc,d,e()   

  1. aSchool of Rare Earths, University of Science and Technology of China, Hefei 230026, Anhui, China
    bGanjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, Jiangxi, China
    cCAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Solid State Battery and Energy Storage Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    dSchool of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    eLongzihu New Energy Laboratory, School of Energy Science and Technology, Henan University, Zhengzhou 450000, Henan, China
  • Received:2025-02-05 Accepted:2025-04-02 Online:2025-06-18 Published:2025-06-12
  • Contact: *E-mail: haowang@ipe.ac.cn (H. Wang),yrliu@ipe.ac.cn (Y. Liu).
  • Supported by:
    National Key R&D Program(2023YFE0108200);National Key R&D Program(2022YFB3807501);National Natural Science Foundation of China(22308356);National Natural Science Foundation of China(22278402);Key R&D Program of Henan Province(231111241800);Natural Science Foundation of Henan(252300421193);CAS Project for Young Scientists in Basic Research(YSBR-050);Zhongke Technology Achievement Transfer and Transformation Center of Henan Province(2024147);Inner Mongolia “Open Bidding for Selecting the Best Candidates” Project(2024JBGS0001);Frontier Basic Research Projects of Institute of Process Engineering, CAS(QYJC-2023-03)

摘要:

质子交换膜燃料电池(PEMFCs)作为一种高效、环保的能源转换装置, 在未来的可持续能源系统中具有重要应用前景. 然而, PEMFCs的长期运行受到阴极氧还原反应(ORR)动力学缓慢和催化剂稳定性不足的限制, 尤其是商用Pt/C催化剂在酸性环境中易发生Pt溶解和颗粒团聚, 导致性能严重衰减. 因此, 开发具有高活性和稳定性的Pt基合金催化剂成为PEMFCs技术发展的关键. 近年来, 通过调控催化剂的形貌和组成, 尤其是引入稳定金属(如Cu)以优化表面应变和电子结构, 已成为提升催化剂性能的有效策略.

基于此, 本文通过一步溶剂热法合成了一系列具有纳米枝晶结构的PtCu合金催化剂(PtCuNDs), 并系统研究了其在PEMFCs中的电催化性能. PtCuNDs催化剂具有亚纳米级的颗粒尺寸和丰富的纳米孔结构, 显著提升了质量传输效率. 通过调节Pt与Cu的比例, 优化了催化剂的d带中心位置, 进而调控氧中间体的吸附能, 最终获得最优的Pt77Cu23ND催化剂. 旋转圆盘电极(RDE)结果表明, Pt77Cu23ND在ORR过程中表现出较好的催化活性, 质量活性(MA)达到0.837 A mgPt-1, 是商用Pt/C催化剂的7.5倍. 在加速耐久性测试(ADT)中, Pt77Cu23ND的MA仅衰减8.2%, 半波电位(E1/2)仅下降2 mV, 表现出较好的稳定性. PEM单电池测试进一步验证了Pt77Cu23ND的优异性能, 其在0.9 V下的MA为0.65 A mgPt-1, 远超美国能源部2025年的目标(0.44 A mgPt-1). 经过30000次ADT后, Pt77Cu23ND的MA衰减仅为18.5%, 且在0.8 A cm-2电流密度下电压衰减仅为9 mV, 显著优于大多数已报道的先进催化剂. 透射电镜结果表明, PtCuNDs催化剂在ADT后仍保持了完整的纳米枝晶结构和均匀的Pt-Cu分布. 进一步结合空位能计算和金属溶出实验,共同证实了其优异稳定性源于稳定的纳米枝晶结构及Pt-Cu键的强相互作用. X射线衍射分析进一步表明, PtCuNDs具有显著的晶格收缩效应, 尤其是Pt(111)晶面的晶格间距明显小于纯Pt纳米枝晶, 这证实了Cu的引入有效诱导了表面压缩应变. 结合密度泛函理论计算, 揭示了PtCuNDs的催化机制: Cu的引入不仅诱导了表面压缩应变, 还优化了氧物种的吸附能, 从而显著提升了ORR活性.

综上所述, 本研究通过设计具有纳米枝晶结构的PtCu合金催化剂, 结合表面氧结合能优化与Pt-Cu键的强相互作用, 协同提升了PEMFCs的催化活性和稳定性. 该工作为设计和合成高稳定性燃料电池催化剂提供了结构设计与电子调控协同优化的新策略.

关键词: Pt-Cu纳米枝晶, 氧还原反应, 稳定性增强, 质子交换膜燃料电池, 可持续能源系统

Abstract:

The rigorous operating condition of proton exchange membrane fuel cells (PEMFCs) poses a substantial hurdle for the long-term stability of Pt-based alloy catalysts; thus, the development of Pt-alloy catalysts with unique morphologies is crucial for enhancing the stability of PEMFCs. In this study, we synthesized a novel PtCu nano-dendrite (PtCuND) catalyst through a facile, one-step solvothermal process. The sub-nanometer particles and nanopores within this catalyst facilitate enhanced mass transport. In PEM single-cell tests, the PtCuND catalyst displays high activity and robust stability, achieving a mass activity of 0.65 A mgPt-1. Notably, after accelerated durability tests, the mass activity and the voltage at 0.8 A cm-2 of PtCuND exhibits only minimal decreases of 18.5% and 9 mV, respectively. The combined experimental results and theoretical calculations conclusively illustrate the optimized adsorption of oxygen species and the impact of compressive strain on the catalyst surface. The enhanced durability can be attributed to the maintained nano-dendritic morphology and the strengthened interaction within the Pt-Cu bonds. This work not only enhances the stability of PEMFCs but also provides a robust foundation for the future scaling up of catalyst production, paving the way for widespread application in sustainable energy systems.

Key words: PtCu nano-dendrites, Oxygen reduction reaction, Enhanced stability, Proton-exchange-membrane fuel cell, Sustainable energy system