催化学报 ›› 2025, Vol. 73: 271-278.DOI: 10.1016/S1872-2067(25)64650-X

• 论文 • 上一篇    下一篇

多晶金表面上析氢反应与氧还原反应的竞争

姚瑶a,b(), 徐菊萍c, 邵敏华b,d,e()   

  1. a大湾区大学(筹)理学院, 广东东莞 523000
    b香港科技大学化学与生物工程系, 香港九龙
    c散裂中子源科学中心, 广东东莞 523803
    d香港科技大学CIAC-HKUST氢能联合实验室, 香港九龙
    e香港科技大学霍英东研究所, 广州电化学储能技术重点实验室, 广东广州 511458
  • 收稿日期:2024-12-27 接受日期:2025-02-26 出版日期:2025-06-18 发布日期:2025-06-12
  • 通讯作者: *电子信箱: yaoyao@gbu.edu.cn (姚瑶),kemshao@ust.hk (邵敏华).
  • 基金资助:
    香港研究资助局(C6011-20GF);香港研究资助局(JLFS/P-602/24);广州市科学技术局(2024A03J0609);中国散裂中子源松山湖科学城开放基金(KFKT2023B15);广东省基础与应用基础研究基金(2023A1515110629)

Competitions between hydrogen evolution reaction and oxygen reduction reaction on an Au surface

Yao Yaoa,b(), Juping Xuc, Minhua Shaob,d,e()   

  1. aSchool of Sciences, Great Bay University, Dongguan 523000, Guangdong, China
    bDepartment of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
    cSpallation Neutron Source Science Center (SNSSC), Dongguan 523803, Guangdong, China
    dCIAC-HKUST Joint Laboratory for Hydrogen Energy, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
    eGuangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, Guangdong, China
  • Received:2024-12-27 Accepted:2025-02-26 Online:2025-06-18 Published:2025-06-12
  • Contact: *E-mail: yaoyao@gbu.edu.cn (Y. Yao),kemshao@ust.hk (M. Shao).
  • Supported by:
    Hong Kong Research Grant Council(C6011-20GF);Hong Kong Research Grant Council(JLFS/P-602/24);Guangzhou Science and Technology Bureau(2024A03J0609);Open Fund of the China Spallation Neutron Source Songshan Lake Science City(KFKT2023B15);Guangdong Basic and Applied Basic Research Foundation(2023A1515110629)

摘要:

析氢反应(HER)在许多电化学合成系统中都是一个严峻挑战, 如二氧化碳还原、氮气还原和过氧化氢合成等. 这些电化学合成系统将可再生电力转化为有价值的化学品, 在不产生污染物的同时, 还能减少二氧化碳排放. 然而, HER的竞争常常导致其法拉第效率低、能量效率低和选择性差. 这是由于这些电化学还原反应的理论电位与HER非常接近, 而HER通常具有高的反应动力学. 此外, HER的竞争使本就包含多个电子-质子转移步骤的能量转换系统变得更加复杂, 导致对这些电化学体系的基础研究, 尤其是涉及动力学和传质特性的研究, 更具挑战性. 因此, 深入理解HER与其他电化学还原反应的竞争机制, 对于基础研究和系统性能优化都至关重要.

本文采用氧还原反应(ORR)作为研究HER竞争的模型反应, 在碱性、中性和酸性电解质中, 在更宽范的电位窗口内研究了多晶金表面上的HER竞争. 在碱性电解质中, 过电位较低时, 多晶金表面上ORR的2电子过程的法拉第效率随着旋转速度的增加而增加, 这表明多晶金表面ORR的4电子过程的决速步骤是H2O2还原过程. 而在中性和碱性电解质中, 当超电势足够高且ORR动力学足够显著时, 金电极可以实现4电子ORR过程并达到真正的O2极限扩散区域. 这些发现表明H2O在碱性和中性电解质中都是金表面ORR的质子源. 在H+浓度低于2 mmol L-1的酸性电解质中, H2O仍然是金表面ORR的质子源, H+还原反应的竞争力极小. 然而, 当H+浓度超过2 mmol L-1时, H+还原反应的竞争变得显著, 并随着H+浓度的增加而加剧. 基于电化学结果构建了ORR系统与H+还原反应竞争的等效电路图, 表明ORR和HER并行发生并相互竞争, 电化学阻抗谱测量进一步证实了这一点. 值得注意的是, H+的传质过程对H+还原反应总电流的贡献显著, 其贡献量与动力学电流相当——这是评估H+还原反应动力学时不容忽视的因素, 即使在用于HER性能评估的典型酸性电解质(如0.1 mol L-1 H+)中, 在2500 r min-1的旋转速度下也是如此. 此外, 本文还强调了在评估HER, ORR, 二氧化碳还原反应和氮气还原反应等的动力学时, 需要将H2O而非H+视为反应的质子源.

综上, 本工作研究了多晶金表面上HER和ORR的竞争机制, 阐明了常见电化学还原反应中质子源的问题, 并对这类反应的决速步骤和反应动力学评估提出了优化建议. 我们相信这项研究将深化对HER及其在电化学还原系统中竞争机制的理解.

关键词: 析氢反应, 氧还原反应, H+还原反应的竞争, 旋转环盘电极, 质子源

Abstract:

Hydrogen evolution reaction (HER) is unavoidable in many electrochemical synthesis systems, such as CO2 reduction, N2 reduction, and H2O2 synthesis. It makes those electrochemical reactions with multiple electron-proton transfers more complex when determining kinetics and mass transfer information. Understanding how HER competes with other electrochemical reduction reactions is crucial for both fundamental studies and system performance improvements. In this study, we employed the oxygen reduction reaction (ORR) as a model reaction to investigate HER competition on a polycrystalline-Au surface, using a rotating ring and disk electrode. It’s proved that water molecules serve as the proton source for ORR in alkaline, neutral, and even acidic electrolytes, and a 4-electron process can be achieved when the overpotential is sufficiently high. The competition from H+ reduction becomes noticeable at the H+ concentration higher than 2 mmol L-1 and intensifies as the H+ concentration increases. Based on the electrochemical results, we obtained an equivalent circuit diagram for the ORR system with competition from the H+ reduction reaction, showing that these reactions occur in parallel and compete with each other. Electrochemical impedance spectroscopy measurements further confirm this argument. Additionally, we discover that the contribution of H+ mass transfer to the total H+ reduction current is significant and comparable to the kinetic current. We believe this work will deepen our understanding of HER and its competition in electrochemical reduction systems.

Key words: Hydrogen evolution reaction, Oxygen reduction reaction, H+ reduction competition, Rotating ring and disk electrode, Proton source