催化学报 ›› 2025, Vol. 72: 211-221.DOI: 10.1016/S1872-2067(24)60271-8

• 论文 • 上一篇    下一篇

Pt原位还原诱导NiFe-MOF拓扑转变用于工业级电解海水制氢

纳国豪a,1, 郑红顺a,1, 陈明鹏a,*(), 孙华传a, 吴阅文a, 李德全a, 陈赟a, 赵勃然a, 赵博a, 周桐a, 何天威a, 张雨潇a, 赵建红a, 张裕敏a, 张瑾a, 刘锋b, 崔浩b, 柳清菊a,*()   

  1. a云南大学材料与能源学院, 云南省微纳材料与技术重点实验室, 国家级光电子能源材料国际联合研究中心, 云南昆明 650091
    b云南贵金属实验室有限公司, 云南昆明 650106
  • 收稿日期:2024-12-03 接受日期:2025-02-03 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: mpchen@ynu.edu.cn (陈明鹏),qjliu@ynu.edu.cn (柳清菊).​
  • 作者简介:1 共同第一作者.
  • 基金资助:
    国家重点研发计划(2022YFB3803600);国家自然科学基金(22368050);国家自然科学基金(22378346);云南省重点研发计划(202302AF080002);云南省基础研究计划项目(202401AU070229);云南省基础研究计划项目(202401AT070460);云南省教育厅科学研究基金项目(2024J0013);云南省教育厅科学研究基金项目(2024J0014);云南贵金属实验室科技计划项目(YPML-20240502008);云南贵金属实验室科技计划项目(YPML-2023050259);云南贵金属实验室科技计划项目(YPML-2023050260);云南省高校服务重点产业科技项目(FWCY-BSPY2024023);云南省教育厅科研基金支持项目及云南大学研究生科研创新基金支持项目(KC-24248426)

In-situ Pt reduction induced topological transformation of NiFe-MOF for industrial seawater splitting

Guohao Naa,1, Hongshun Zhenga,1, Mingpeng Chena,*(), Huachuan Suna, Yuewen Wua, Dequan Lia, Yun Chena, Boran Zhaoa, Bo Zhaoa, Tong Zhoua, Tianwei Hea, Yuxiao Zhanga, Jianhong Zhaoa, Yumin Zhanga, Jin Zhanga, Feng Liub, Hao Cuib, Qingju Liua,*()   

  1. aYunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, Yunnan, China
    bYunnan Precious Metals Laboratory Co., Ltd., Kunming 650106, Yunnan, China
  • Received:2024-12-03 Accepted:2025-02-03 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: mpchen@ynu.edu.cn (M. Chen), qjliu@ynu.edu.cn (Q. Liu).
  • About author:1 Contributed equally to this work.
  • Supported by:
    National Key Research and Development Program of China(2022YFB3803600);National Natural Science Foundation of China(22368050);National Natural Science Foundation of China(22378346);Key Research and Development Program of Yunnan Province(202302AF080002);Yunnan Basic Applied Research Project(202401AU070229);Yunnan Basic Applied Research Project(202401AT070460);Scientific Research Fund Project of Yunnan Education Department(2024J0013);Scientific Research Fund Project of Yunnan Education Department(2024J0014);Scientific and Technological Project of Yunnan Precious Metals Laboratory(YPML-20240502008);Scientific and Technological Project of Yunnan Precious Metals Laboratory(YPML-2023050259);Scientific and Technological Project of Yunnan Precious Metals Laboratory(YPML-2023050260);Science and Technology Projects of Universities Serving Key Industries in Yunnan Province(FWCY-BSPY2024023);Yunnan Provincial Department of Education Scientific Research Fund-supported project and Yunnan University Graduate Research Innovation Fund-supported project(KC-24248426)

摘要:

电解水制氢因气体纯度高、环保无污染、技术成熟, 近年来被视为实现“双碳”目标的关键技术之一. 在全球淡水资源紧缺的背景下,推动电解水制氢技术从淡水依赖型向海水利用型转型升级,已成为实现绿氢规模化生产的关键路径. 然而, 海水中的复杂成分会在电解过程中影响催化剂的活性及稳定性, 商用Pt/C催化剂无法满足实际应用需求. 因此, 灵活调控金属-载体相互作用从而增强催化剂性能和抗腐蚀能力至关重要, 不仅为突破海水电解制氢技术瓶颈提供有效解决方案, 还可为设计制备高效、稳定的析氢(HER)催化剂提供理论依据.

金属-有机框架(MOF)具有高比表面积和丰富活性位点,因此可用作理想的催化剂载体. 本文采用原位拓扑转变策略, 以一种典型镍铁MOF (NiFe-BDC, BDC:对苯二甲酸)作为催化剂载体, 将Pt量子点均匀沉积于其载体表面. 通过球差校正透射电子显微镜和X射线吸收光谱分析了拓扑转变后样品Pt/T-NiFe-BDC的结构组成以及催化剂中元素配位状态. NiFe-BDC载体发生相转变并生成了富含氧空位镍铁双氢氧化物, 同时Pt量子点中Pt-Pt键缩短, 从而增强了金属-载体相互作用, 优化了催化剂电子结构. 催化剂在碱性海水中展现出优异的HER催化性能, 在500和1000 mA cm-²的大电流密度下, 催化剂仅需158和266 mV的超低过电位即可实现稳定析氢, 且连续运行500 h没有明显衰减. 将Pt/T-NiFe-BDC作为阴极、NiFe-BDC作为阳极组装的电解槽, 仅需1.89 V的槽压即可驱动1000 mA cm-²的工业级电解水. 通过理论计算分析Pt/T-NiFe-BDC的电子结构和表面性质, 通过原位拉曼光谱解析界面水结构及其解离过程, 揭示了催化剂在HER过程中的可逆氢溢流机制. 催化剂载体表面氧空位能促进水分子的解离并使*H向Pt量子点溢流, 而Pt量子点提供了高效的*H吸附和结合位点, 使中间产物快速结合并脱附, 这一协同作用显著提升了催化剂HER动力学, 并增强了催化剂的稳定性和抗腐蚀能力.

综上所述, 本文通过Pt原位还原诱导NiFe-MOF拓扑转变, 设计制备了具有低过电位、强稳定性、强抗腐蚀性的Pt/T-NiFe-BDC催化剂用于高效HER, 并阐明了氧空位与Pt量子点协同触发的可逆氢溢流机制, 为实现工业规模电解海水提供了一种有效策略.

关键词: 电解海水, 析氢反应, 拓扑转变, 金属-载体相互作用, 可逆氢溢流

Abstract:

Metal-support interaction (MSI) is regarded as an indispensable manner to stabilize active metals and modulate catalytic activity, which shows great potentials in developing of efficient hydrogen evolution reaction (HER) electrode with high activity and strong robustness. Herein, this work presents a novel heterostructure with ultrafine platinum quantum dots (Pt QDs) on defective catalytic supports derived from metal-organic frameworks (MOFs). It is indicated substantial oxygen vacancies can be generated and Pt-Pt bonds can be optimized through topological transformation. The resulting Pt/T-NiFe-BDC (BDC: C8H6O4) exhibits competitive HER activity in alkaline seawater, attaining ultralow overpotentials of 158 and 266 mV at 500 and 1000 mA cm-2 with fast kinetics and outstanding stability. An asymmetric water electrolyzer using Pt/T-NiFe-BDC as a cathode only requires a voltage of 1.89 V to generate an industrial density of 1000 mA cm-2 and shows no attenuation in 500-h continuous test at 500 mA cm-2. Theoretical calculations and in-situ spectroscopic analysis reveal the reversible hydrogen spillover mechanism, in which oxygen vacancies facilitate the sluggish water dissociation and Pt QDs promote the H* combination. This study provides a new paradigm to engineer metal-supported catalysts for efficient and robust seawater splitting.

Key words: Seawater splitting, Hydrogen evolution reaction, Topological transformation, Metal support interaction, Reversible hydrogen spillover