催化学报 ›› 2025, Vol. 72: 222-229.DOI: 10.1016/S1872-2067(24)60269-X

• 论文 • 上一篇    下一篇

Sn电子调节器增强Fe位点电催化CO2还原性能

胡呈弘,1, 张悦,1, 张仪, 黄沁彤, 沈葵, 陈立宇*(), 李映伟*()   

  1. 华南理工大学化学化工学院, 广东省燃料电池技术重点实验室, 广东广州 510640
  • 收稿日期:2024-11-30 接受日期:2025-01-14 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: liyuchen@scut.edu.cn (陈立宇),liyw@scut.edu.cn (李映伟).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22138003);国家自然科学基金(22378136);国家自然科学基金(22422806);国家自然科学基金(22108083);国家自然科学基金(21825802);广东省珠江人才计划(2021QN02C847);广东省珠江人才计划(2021ZT09Z109);广东省自然科学基金(2024A1515011196);广东省自然科学基金(2023A1515010312);广东省自然科学基金(2023B1515040005);中央高校基本科研业务费(2024ZYGXZR011);广州市科技计划(2025A04J5244);制浆造纸工程国家重点实验室(2022C04);制浆造纸工程国家重点实验室(2022ZD05);制浆造纸工程国家重点实验室(2023PY06);制浆造纸工程国家重点实验室(2024ZD09);TCL青年学者项目

Single-atomic Fe sites modulated by Sn regulator for enhanced electrochemical CO2 reduction

Chenghong Hu,1, Yue Zhang,1, Yi Zhang, Qintong Huang, Kui Shen, Liyu Chen*(), Yingwei Li*()   

  1. Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2024-11-30 Accepted:2025-01-14 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: liyuchen@scut.edu.cn (L. Chen), liyw@scut.edu.cn (Y. Li).
  • About author:1 Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22138003);National Natural Science Foundation of China(22378136);National Natural Science Foundation of China(22422806);National Natural Science Foundation of China(22108083);National Natural Science Foundation of China(21825802);Guangdong Pearl River Talents Program(2021QN02C847);Guangdong Pearl River Talents Program(2021ZT09Z109);Natural Science Foundation of Guangdong Province(2024A1515011196);Natural Science Foundation of Guangdong Province(2023A1515010312);Natural Science Foundation of Guangdong Province(2023B1515040005);Fundamental Research Funds for the Central Universities(2024ZYGXZR011);Science and Technology Program of Guangzhou(2025A04J5244);State Key Laboratory of Pulp and Paper Engineering(2022C04);State Key Laboratory of Pulp and Paper Engineering(2022ZD05);State Key Laboratory of Pulp and Paper Engineering(2023PY06);State Key Laboratory of Pulp and Paper Engineering(2024ZD09);TCL Young Talent Program

摘要:

由可再生能源驱动的电催化二氧化碳还原反应(CO2RR)可利用温室气体CO2来制备高附加值产品. CO2RR制CO选择性高, 且产物易于从电解质中分离, 具有良好的工业应用前景. 目前, CO2RR制备CO的高活性催化剂主要为Au, Pd和Ag等贵金属材料, 限制了其商业化应用. 过渡金属基单原子催化剂(SACs)具有高原子利用率、可调的配位环境和精确的活性位点, 在CO2RR中具有巨大潜力. 其中, Fe基SACs表现出类似贵金属的电子性质, 具有较高的CO2RR制CO效率, 有望成为贵金属催化剂的替代材料. 然而, 在CO2制CO过程中, Fe位点与*CO吸附较强, 不利于*CO的脱附, 导致Fe基SACs的CO2RR活性仍无法媲美贵金属. 前期报道通过引入S和P等杂原子或过渡金属位点来调控Fe的电子结构, 降低*CO结合强度, 但这些调节剂对H也具有较强亲和力, 易诱发析氢副反应, 降低了CO2RR的法拉第效率. 因此, 开发有效的策略来提高Fe基SACs的本征活性和选择性仍然是一个挑战.

本文构建了一种N掺杂碳负载的主族Sn和过渡金属Fe组成的双原子催化剂(Fe-Sn/NC), 利用析氢惰性的Sn位点调控活性中心Fe的电子结构, 以提高CO2RR制CO性能. 首先, 采用浸渍法将Fe3+和Sn4+离子吸附于ZIF-8内. 随后, 在惰性气体中进行高温煅烧, 得到Fe-Sn/NC催化剂. 透射电镜结果证实Fe-Sn/NC中Fe和Sn以原子形式分散在NC基底上, 不存在团聚的金属颗粒. X射线光电子能谱和X射线吸收谱结果表明, Fe和Sn分别与三个N原子相连, 并形成了Fe-Sn键. Sn位点向Fe转移电子, 形成富电荷的Fe中心. 差分电荷图显示Sn位点的引入有效打破了FeN4位点的电荷对称性, 态密度图表明Sn可以调节Fe位点的d带中心, 使其远离费米能级. 自由能垒计算结果表明, 上述电子调控机制有效地削弱了*CO在Fe位点上的吸附, 降低了CO2向CO转化的反应能垒. 将Fe-Sn/NC在CO2饱和的0.1 mol L−1 KHCO3溶液中进行性能测试, 结果表明, 在−0.5 V (相对于可逆氢电极)下的CO法拉第效率(FECO)达到98.6%, 并在−0.4到−0.9 V的宽电位范围内FECO保持在90%以上. Fe-Sn/NC在−0.9 V的转化频率值为1.5 × 104 h−1, 远高于Fe/NC材料. 此外, 为降低CO2RR体系的能耗, 采用肼氧化反应(HzOR)替代热力学不利的阳极析氧反应(OER), 并利用Fe-Sn/NC作为正极和负极组建了CO2RR//HzOR电解系统. 结果表明, 与传统CO2RR//OER系统相比, CO2RR//HzOR系统在5 mA cm−2时的电池电压降低了0.64 V, 理论上节省了38%的能量.

综上, 本工作提出了利用主族元素调节器调控Fe单原子电子结构的新思路, 通过弱化*CO在Fe位点上的吸附, 提升Fe单原子的CO2RR性能, 揭示了主族金属调节器增强Fe基SAC性能的作用规律, 为具有成本效益的非贵金属基催化剂的设计和开发提供了新思路.

关键词: 单原子催化剂, 电催化CO2还原, 电子结构调控, 双原子对, 主族金属

Abstract:

Single-atom Fe catalysts show significant promise in the electrocatalytic reduction of CO2 (CO2RR), while their performance remains inferior to that of precious metal catalysts due to the overly strong binding of *CO intermediates. Although the introduction of heteroatoms or transition metal sites can modulate the binding strength of *CO on Fe sites, these regulators often induce competitive hydrogen evolution reaction (HER) with reduced Faraday efficiency (FE). In this work, we employ HER-inert Sn as a regulator to tune the electronic structure of Fe, weakening *CO adsorption and enhancing CO2RR performance. Diatomic Fe-Sn pairs supported on N-doped carbon (Fe-Sn/NC) were synthesized, achieving FE for CO exceeding 90% over a broad potential range from −0.4 to −0.9 V versus the reversible hydrogen electrode. Fe-Sn/NC shows a high turnover frequency of 1.5 × 104 h−1, much higher than that of Fe/NC. Characterization results and theoretical calculations demonstrate that bonding Sn site to Fe generates electron-rich Fe centers, effectively reducing the adsorption strength of *CO without triggering HER. Additionally, Fe-Sn/NC exhibits exceptional activity in hydrazine oxidation performance (HzOR). The HzOR-assisted CO2RR system using Fe-Sn/NC as electrodes reduces energy consumption by 38% compared with the conventional CO2RR coupled oxygen evolution reaction system.

Key words: Atomically dispersed catalyst, Electrochemical CO2 reduction, Electronic modification, Diatomic pairs, Main-group element