催化学报 ›› 2025, Vol. 69: 17-34.DOI: 10.1016/S1872-2067(24)60204-4

• 综述 • 上一篇    下一篇

M-N-C单原子催化剂自旋调控及其电催化应用研究进展

崔嘉轶a,b, 余新涛a,b, 李学瑶a,b, 余建敏a,b, 彭立山a,b,*(), 魏子栋c,*()   

  1. a中国科学院赣江创新研究院稀土重点实验室, 江西赣州 341119
    b中国科学技术大学稀土学院, 安徽合肥 230026
    c重庆大学化学化工学院, 特种化学电源国家重点实验室, 化工过程强化与反应国家-市联合工程实验室, 重庆 400044
  • 收稿日期:2024-11-10 接受日期:2024-11-14 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: lspeng@gia.cas.cn (彭立山), zdwei@cqu.edu.cn (魏子栋).
  • 基金资助:
    国家自然科学基金(22209186);国家自然科学基金(22479149);中国科学院赣江创新研究院自主研发项目(E355F006);江西省自然科学基金(20242BAB23016);江西省“双千计划”(jxsq2023101056);江西省重点研发计划(20223BBG74004);江西省重点研发计划(20232BBG70003);中国科学院青年创新促进会(2023343)

Advances in spin regulation of M-N-C single-atom catalysts and their applications in electrocatalysis

Jiayi Cuia,b, Xintao Yua,b, Xueyao Lia,b, Jianmin Yua,b, Lishan Penga,b,*(), Zidong Weic,*()   

  1. aKey Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, Jiangxi, China
    bSchool of Rare Earths, University of Science and Technology of China, Hefei 230026, Anhui, China
    cNational Key Laboratory of Special Chemical Power Sources, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2024-11-10 Accepted:2024-11-14 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: lspeng@gia.cas.cn (L. Peng), zdwei@cqu.edu.cn (Z. Wei).
  • About author:Lishan Peng (Ganjiang Innovation Academy, Chinese Academy of Sciences) obtained his B.S. and Ph.D. degrees in 2014 and 2019, respectively, at Chongqing University. Subsequently, he worked as a postdoctoral researcher at Westlake University, the University of Auckland (New Zealand) and the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. His research interests include the design and theoretical study of advanced electrocatalysts for energy storage and conversion. He has coauthored more than 80 peer-reviewed papers with citation over 5000 times.
    Zidong Wei (School of Chemistry and Chemical Engineering, Chongqing University) received Bachelor degree from Shaanxi University of Science and Technology (1984), and Ph.D. degree from Tianjin University (1994). He has been in the field of electrochemical catalysis for more than 30 years and has published more than 300 papers with citation over 22000 times. He has been the Chief Scientist of the National Key Research and Development Program and the Chief Scientist of the National Natural Science Foundation. He edited or participated in the compilation of “Electrochemical Catalysis”, “Chemical Process Intensification”, “Electrocatalysis”, “Electrocatalytic Oxygen Reduction Reaction” and other books. He won the first, second and third prizes of provincial and ministerial level natural sciences and technological progress once each. He is a council member in the Chemical Industry and Engineering Society of China, and Chinese Chemical Society.
  • Supported by:
    National Natural Science Foundation of China(22209186);National Natural Science Foundation of China(22479149);Self-deployed Projects of Ganjiang Innovation Academy, CAS(E355F006);Natural Science Foundation of Jiangxi Province(20242BAB23016);"Double Thousand Plan" of Jiangxi Province(jxsq2023101056);Key Research and Development Program of Jiangxi Province(20223BBG74004);Key Research and Development Program of Jiangxi Province(20232BBG70003);Youth Innovation Promotion Association, Chinese Academy of Sciences(2023343)

摘要:

随着全球能源需求的持续增长和环境污染问题的加剧, 开发高效的绿色能源转换和污染降解催化剂已成为能源领域的重要研究方向. 金属-氮-碳单原子催化剂(M-N-C SACs)由于其独特的几何结构、电子状态和催化能力, 在催化领域中展现了极大的潜力. 近年来, 调控催化剂活性中心的电子自旋态已成为提升催化性能的重要策略之一. 自旋调控不仅可以调节催化活性位点的电子结构, 还能影响反应物的吸附和中间体的形成, 有效降低能量障碍, 提高催化效率. 因此, 探索自旋调控在M-N-C单原子催化剂中的应用, 对于推动催化反应的效率提升和催化剂设计具有深远的意义.

本文系统综述了自旋调控在M-N-C单原子催化剂中的应用, 重点讨论了调节M-N-C催化剂自旋态的机制及其在电催化中的作用. 首先, 概述了自旋调控的基本原理, 解释了自旋态如何影响催化反应的能量屏障和反应速率. 具体而言, 调控自旋态能够调节催化剂中金属中心的电子结构, 进而改变金属与反应物之间的相互作用, 优化吸附和反应路径. 接着, 重点介绍了几种调控M-N-C催化剂自旋态的策略, 包括: 杂原子掺杂、配位数调节、金属团簇-单原子重组和双金属协同作用等. 通过这些方法, 研究者能够精确调节催化剂中金属的自旋态, 实现催化性能的优化. 还讨论了多种表征技术, 包括电子自旋共振、穆斯堡尔谱、X射线吸收谱等, 如何用于研究自旋态调控过程中的电子结构变化, 并进一步验证自旋调控对催化反应性能的影响. 最后, 结合现有的实验数据, 总结了自旋调控对M-N-C催化剂性能提升的具体影响, 提出了反应机理的理论解释, 指出自旋态变化对氧还原和析氧等催化反应的促进作用, 并讨论了不同自旋态对反应中间体吸附的影响.

尽管自旋调控在催化领域的研究取得了显著进展, 但仍面临许多挑战, 包括调控策略的选择性、催化剂的稳定性以及反应条件的优化. 未来的研究可以集中在探索新的自旋调控机制、发展更加精确的表征技术以及寻找更为高效、稳定的催化剂体系. 本文的研究为自旋调控在催化领域的应用提供了有价值的参考, 并为相关催化剂的设计和优化提供了新的思路.

关键词: 电催化, 金属-氮-碳催化剂, 单原子催化剂, 电子自旋效应, 自旋调控

Abstract:

To enhance the efficiency of green energy harvesting and pollutant degradation, significant efforts are focused on identifying highly effective catalysts. Metal-nitrogen-carbon single-atom catalysts (M-N-C SACs) have emerged as pivotal in catalysis due to their unique geometric structures, electronic states, and catalytic capabilities. Notably, the incorporation of magnetic elements at the active centers of these single-atom catalysts has garnered attention for their role in efficient electrochemical conversions. The orientation of spin states critically influences the adsorption and formation of reactants and intermediates, making the precise control of spin alignment and magnetic moments essential for reducing energy barriers and overcoming spin-related limitations, thereby enhancing catalytic activity. Thus, understanding the catalytic role of spin and modulating spin density at M-N-C single-atom centers holds profound fundamental and technological significance. In this review, we elucidate the fundamental mechanisms governing spin states and its influence in electrocatalysis. We then discuss various strategies for adjusting the spin states of active centers in the M-N-C SACs and the associated characterization techniques. Finally, we outline challenges and future perspectives of spin regulation for high-performance catalysts. This review provides deep insights into the micro-mechanisms of catalytic phenomena and offers a roadmap for designing spin-regulated catalysts for advanced energy applications.

Key words: Electrocatalysis, M-N-C materials, Single-atom catalyst, Electron spin effect, Spin regulation