催化学报 ›› 2025, Vol. 69: 17-34.DOI: 10.1016/S1872-2067(24)60204-4
崔嘉轶a,b, 余新涛a,b, 李学瑶a,b, 余建敏a,b, 彭立山a,b,*(), 魏子栋c,*(
)
收稿日期:
2024-11-10
接受日期:
2024-11-14
出版日期:
2025-02-18
发布日期:
2025-02-10
通讯作者:
电子信箱: 基金资助:
Jiayi Cuia,b, Xintao Yua,b, Xueyao Lia,b, Jianmin Yua,b, Lishan Penga,b,*(), Zidong Weic,*(
)
Received:
2024-11-10
Accepted:
2024-11-14
Online:
2025-02-18
Published:
2025-02-10
Contact:
E-mail: About author:
Lishan Peng (Ganjiang Innovation Academy, Chinese Academy of Sciences) obtained his B.S. and Ph.D. degrees in 2014 and 2019, respectively, at Chongqing University. Subsequently, he worked as a postdoctoral researcher at Westlake University, the University of Auckland (New Zealand) and the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. His research interests include the design and theoretical study of advanced electrocatalysts for energy storage and conversion. He has coauthored more than 80 peer-reviewed papers with citation over 5000 times.Supported by:
摘要:
随着全球能源需求的持续增长和环境污染问题的加剧, 开发高效的绿色能源转换和污染降解催化剂已成为能源领域的重要研究方向. 金属-氮-碳单原子催化剂(M-N-C SACs)由于其独特的几何结构、电子状态和催化能力, 在催化领域中展现了极大的潜力. 近年来, 调控催化剂活性中心的电子自旋态已成为提升催化性能的重要策略之一. 自旋调控不仅可以调节催化活性位点的电子结构, 还能影响反应物的吸附和中间体的形成, 有效降低能量障碍, 提高催化效率. 因此, 探索自旋调控在M-N-C单原子催化剂中的应用, 对于推动催化反应的效率提升和催化剂设计具有深远的意义.
本文系统综述了自旋调控在M-N-C单原子催化剂中的应用, 重点讨论了调节M-N-C催化剂自旋态的机制及其在电催化中的作用. 首先, 概述了自旋调控的基本原理, 解释了自旋态如何影响催化反应的能量屏障和反应速率. 具体而言, 调控自旋态能够调节催化剂中金属中心的电子结构, 进而改变金属与反应物之间的相互作用, 优化吸附和反应路径. 接着, 重点介绍了几种调控M-N-C催化剂自旋态的策略, 包括: 杂原子掺杂、配位数调节、金属团簇-单原子重组和双金属协同作用等. 通过这些方法, 研究者能够精确调节催化剂中金属的自旋态, 实现催化性能的优化. 还讨论了多种表征技术, 包括电子自旋共振、穆斯堡尔谱、X射线吸收谱等, 如何用于研究自旋态调控过程中的电子结构变化, 并进一步验证自旋调控对催化反应性能的影响. 最后, 结合现有的实验数据, 总结了自旋调控对M-N-C催化剂性能提升的具体影响, 提出了反应机理的理论解释, 指出自旋态变化对氧还原和析氧等催化反应的促进作用, 并讨论了不同自旋态对反应中间体吸附的影响.
尽管自旋调控在催化领域的研究取得了显著进展, 但仍面临许多挑战, 包括调控策略的选择性、催化剂的稳定性以及反应条件的优化. 未来的研究可以集中在探索新的自旋调控机制、发展更加精确的表征技术以及寻找更为高效、稳定的催化剂体系. 本文的研究为自旋调控在催化领域的应用提供了有价值的参考, 并为相关催化剂的设计和优化提供了新的思路.
崔嘉轶, 余新涛, 李学瑶, 余建敏, 彭立山, 魏子栋. M-N-C单原子催化剂自旋调控及其电催化应用研究进展[J]. 催化学报, 2025, 69: 17-34.
Jiayi Cui, Xintao Yu, Xueyao Li, Jianmin Yu, Lishan Peng, Zidong Wei. Advances in spin regulation of M-N-C single-atom catalysts and their applications in electrocatalysis[J]. Chinese Journal of Catalysis, 2025, 69: 17-34.
Fig. 2. (a) Molecular orbital diagram of triplet and singlet oxygen. (b) Distinctive reshaping of the wavefunction for the 3Σg? (left) states and 1Δg (right). Because of the Fermi hole that mitigates electronic repulsions; unpaired electrons do not share the center of the 3Σg? O2 molecule. Therefore, triplet oxygen (yellow shading, left) is much more stable than singlet oxygen (blue shading, right). Reprinted with permission from Ref. [36]. Copyright 2021, The Authors. (c) Calculated PDOS diagrams for Co(OH)2, Co3(SOH)x, and Co3S4 and the corresponding magnetic moments of O2 excited via the magnetization effect of the catalysts. Reprinted with permission from Ref. [45]. Copyright 2017, American Chemical Society.
Fig. 3. (a) Crystal field splitting of d orbitals in an octahedral structure. Red and blue spheres represent O and 3d metal atoms, respectively. Electron configurations of Co3+ in different orbitals under low-spin (b), intermediate-spin (c) and high-spin (d) states. Reprinted with permission from Ref. [52]. Copyright 2023, Wiley-VCH GmbH. (e) The relationship of the ORR overpotential versus ?G*OOH for all the carbon active sites with joint participation of the charge, spin and ligand effects. The distribution of ?G*OOH for all the carbon active sites with separate participation of the spin density effect (f). Reprinted with permission from Ref. [54]. Copyright 2021, The Authors.
Fig. 4. (a) The proposed ORR mechanism for the Fe1-N4SC. (b) Content of different Fe moieties of the three catalysts. (c) LSV curves for the catalysts acquired in O2-saturated 0.1 mol L?1 KOH solution on a rotating ring disc electrode (RRDE) at a rotation speed of 1600 r min?1 and a scan rate of 5 mV s?1. Reprinted with permission from Ref. [65]. Copyright 2021, Wiley-VCH GmbH. (d) FT-EXAFS fitting results of FeSA-NSC-900. (e) Molecular orbital diagram of N2 and possible Fe spin configurations in FeN4 and FeN3S1. (f) NH3 yields of FeSA-NSC-800, FeSA-NSC-900, FeSA-NSC-1000, FeSA-NSC-1100, and FeSA-N4C. Reprinted with permission from Ref. [67]. Copyright 2022, Wiley-VCH GmbH.
Fig. 5. (a) Schematic illustration of the preparation of SA Fe-N-C. (b) EPR spectra of Fe-N-C. (c) LSV curves at a rotation rate of 900?r min-1 of Fe-N-C in 0.1 mol L?1 HClO4. Reprinted with permission from Ref. [76]. Copyright 2022, Elsevier. (d) Schematic illustration for preparation of Ru1/NC-T catalysts. (e) Reusability tests at different conversion levels. Reprinted with permission from Ref. [78]. Copyright 2021, The Authors. (f) Configurations of Fe anchored N2O2-C, N2C2-C and C2O2-C. Dark golden rod sphere: iron; brown sphere: carbon; blue sphere: nitrogen; and red sphere: oxygen. (g) Free energy diagram for the NRR at U = 0 V on Fe-N2C2-C with distal and alternative reaction pathways. Reprinted with permission from Ref. [80]. Copyright 2022, Royal Society of Chemistry.
Fig. 6. (a) Projected DOS diagrams of Fe-N-C and Fe-N-C/PdNC. (b) Spin density diagrams of Fe-N-C and Fe-N-C/PdNC (the isosurface is 0.1 a.u.). (c) Tafel plots (B) and the JK curves (C) of catalysts. Reprinted with permission from Ref. [87]. Copyright 2022, Elsevier. (d) Pyrolytic synthesis of FeNx/g-C3N4 catalysts. (e) Room-temperature 57Fe M?ssbauer spectra of I-FeNx/g-C3N4-5 catalyst: (a) fresh catalyst, (b) after the first cycle, and (c) after the second cycle. Reprinted with permission from Ref. [89]. Copyright 2018, American Chemical Society. (f) Schematic representation of N2 coordinated with three Fe(I)-ion homogeneous complexes in the side-on/end-on/end-on (μ3?η2:η1η1) configuration. (g) Schematic representation of N2 coordinated with heterogeneous Fe3/θ-Al2O3 (010) in the same configuration. (h) The major interactions and energy levels of the scalar relativistic Kohn-Sham β-spin MOs of isolated Fe3N2 with correlation to the orbitals from Fe3 and N2 fragments. (i) TOFs per site of ammonia synthesis over the three catalysts as a function of N2 partial pressure at 700?K and 100?bar. Reprinted with permission from Ref. [92]. Copyright 2018, The Authors.
Fig. 7. (a) Schematic illustration of synthesis procedure for Fe,Mn/N-C catalysts. (b) Magnetic susceptibility of Fe,Mn/N-C. (c) LSV curves of Fe,Mn/N-C, Fe/N-C, Mn/N-C, and Pt/C catalyst in O2-saturated 0.1 mol L?1 KOH solution. Reprinted with permission from Ref. [104]. Copyright 2021, The Authors. (d) ΔG1*H and (e) ΔG2*H for Fe/M-N-C (M = Mn, Fe, Co, Ni, Cu, and Zn) (f) Schematic illustration of the structure of the Fe/Zn-N-C DAC. (g) LSV curves of Fe/Zn-N-C, Fe-N-C, Zn-N-C and Pt/C for the ORR in O2-saturated 0.1 mol L?1 KOH solution. Reprinted with permission from Ref. [105]. Copyright 2022, Royal Society of Chemistry. (h) Room-temperature 57Fe M?ssbauer spectroscopy measurements of Fe1Se1-NC and (i) Fe1-NC (j) Content of different Fe moieties of the two catalysts (k) LSV curves for the catalysts acquired in O2-saturated 0.1 mol L?1 KOH solution on a rotating disc electrode (RDE) at 1600?r min?1 and a scanning rate of 5 mV s?1. Reprinted with permission from Ref. [106]. Copyright 2022, Elsevier.
Fig. 8. (a) Schematic for sensing the dipole-dipole interaction between a sensor atom (Fe) and a target atom. Electron spin resonance of individual Fe atoms on bilayer MgO/Ag(100) is driven by a radiofrequency electric field at the tunnelling junction due to VRF. The out-of-plane magnetic field Bz sets the resonance frequency. An in-plane magnetic field Bx mixes the spin states of Fe to increase the ESR signal. A spin-polarized (SP) STM tip measures the spin resonance signal via tunnelling magnetoresistance. The target atom creates a local magnetic field (dipolar field) that is detected by the sensor atom (Fe). (b) Constant-current STM image of four Fe atoms (~0.17 nm apparent height) on the surface. Imaging conditions are VDC = 0.1 V, I = 10 pA, Bz = 0.18 T, Bx = 5.7 T and T = 1.2 K. Reprinted with permission from Ref. [116]. Copyright 2017, Springer Nature.
Fig. 9. (a) A photograph of a homemade silicon nitride membrane with four electrical contacts. (b) A schematic showing the local Joule heating on a Pt/YIG FIB lamella for in-situ heating STEM-EELS experiments. Reprinted with permission from Ref. [128]. Copyright 2013, IEEE.
Fig. 10. (a) The synthesis process of o-MQFe. (b) 57Fe M?ssbauer spectroscopy. (c) 1/χm plots for PQD-Fe and o-MQFe-10:20:5. Reprinted with permission from Ref. [139]. Copyright 2022, Wiley-VCH GmbH.
|
[1] | 陈明星, 杜子翯, 刘念, 李慧杰, 齐静, 上官恩波, 李晶, 曹嘉豪, 杨树姣, 张伟, 曹睿. 阴阳离子调节策略激活晶格氧促进析氧性能[J]. 催化学报, 2025, 69(2): 282-291. |
[2] | 刘锡来, 仲伟, 靳雨帆, 王天娇, 肖雪, 陈沛, 陈煜, 艾轩. 钯铂双金属烯用于低能耗5-羟甲基糠醛电化学氢化[J]. 催化学报, 2025, 69(2): 241-248. |
[3] | 刘京, 马贤迪, 卢政汉, 申东元, 赵阿雅, 韩晸宇, 龙剑平, 周震, 焦梦改, 李国承, 赵恩爱. 靶向构筑高性能单原子铂基氢析出反应电催化剂[J]. 催化学报, 2025, 69(2): 259-270. |
[4] | 李阳阳, 杨静怡, 乔波涛, 张涛. 尺寸依赖的金属载体相互作用调控Pt/CoFe2O4催化反应性能[J]. 催化学报, 2025, 69(2): 292-302. |
[5] | 蒋元元, 张妍, 刘梦梦, 刘璐璐, 陈红, 叶盛. 双电荷传输媒介促进赤铁矿光阳极的电荷转移实现高效光电催化水分解[J]. 催化学报, 2025, 69(2): 75-83. |
[6] | 王铭智, 房文生, 朱德雨, 夏琛沣, 郭巍, 夏宝玉. 电化学CO2还原催化剂与反应器串联设计[J]. 催化学报, 2025, 69(2): 1-16. |
[7] | 张翔, 李苇杭, 张进, 周豪慎, 钟苗. Cu/Fe2O3异质界面协同级联催化硝酸盐高效电还原为氨[J]. 催化学报, 2025, 68(1): 404-413. |
[8] | 王金鑫, 张嘉奇, 陈晨. 电催化二氧化碳还原转化到多碳产物: 铜基催化剂动态表面的视角[J]. 催化学报, 2025, 68(1): 83-102. |
[9] | Athira Krishnan, K. Archana, A. S. Arsha, Amritha Viswam, M. S. Meera. 宽带隙半导体在电催化和光催化水分解绿色制氢中的潜在作用[J]. 催化学报, 2025, 68(1): 103-145. |
[10] | 贡立圆, 陶李, 王雷, 符显珠, 王双印. 高温质子交换膜燃料电池阴极抗磷酸中毒催化剂的研究进展[J]. 催化学报, 2025, 68(1): 155-176. |
[11] | Kaining Li, Yasutaka Kuwahara, Hiromi Yamashita. 聚乙烯亚胺辅助合成包含多尺寸Ni物种的中空碳球用于CO2电还原[J]. 催化学报, 2024, 64(9): 66-76. |
[12] | 田文柔, 韩俊, 李娜君, 陈冬赟, 徐庆锋, 李华, 路建美. 通过温度依赖性自转化在SnS2/SnS上进行界面工程以增强压电催化[J]. 催化学报, 2024, 64(9): 166-179. |
[13] | 戴昊, 宋涛, 乐弦, 李福智, 魏淑婷, 徐延超, 舒偲妍, 崔子昂, 王成, 顾均, 段乐乐. 含氮石墨炔上构建Cu-N2单原子电催化剂用于CO2还原制CH4[J]. 催化学报, 2024, 64(9): 123-132. |
[14] | 王佳琳, 张凯妮, Ta Thi Thuy Nga, 王亦清, 石玉川, 魏代星, 董崇礼, 沈少华. 具有非对称配位结构的硫族杂原子掺杂Ni-N-C单原子催化剂及其电化学二氧化碳还原性能[J]. 催化学报, 2024, 64(9): 54-65. |
[15] | 霍韵滢, 郭聪, 张永乐, 刘婧怡, 张巧, 刘芝婷, 杨光星, 李仁贵, 彭峰. 自支撑Ni(OH)2/NF催化剂高效电催化氧化5-羟甲基糠醛反应研究[J]. 催化学报, 2024, 63(8): 282-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||