催化学报 ›› 2025, Vol. 69: 35-51.DOI: 10.1016/S1872-2067(24)60206-8

• 综述 • 上一篇    下一篇

血红素依赖的工程化改性过加氧酶的催化性能研究最新进展

姜谊平a,1, Zaw Ko Lattb,1, 丛志奇a,*()   

  1. a中国科学院青岛生物能源与过程研究所光电转换与太阳能光电转化与利用重点实验室, 青岛新能源山东省实验室, 中国科学院生物燃料重点实验室, 山东省合成生物学重点实验室, 山东能源研究院, 山东青岛 266101, 中国
    b缅甸教育部生物技术研究部, 皎施, 缅甸
  • 收稿日期:2024-09-29 接受日期:2024-12-02 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: congzq@qibebt.ac.cn (丛志奇).
  • 作者简介:第一联系人:

    1共同第一作者.

  • 基金资助:
    科技部国家重点研发计划(2023YFA0915500);国家自然科学基金(32371311);国家自然科学基金(32471325);国家自然科学基金(22207112);泰山学者项目(tstp20240841);中国科学院国际人才计划(2019PB0167);中国科学院青岛生物能源与过程研究所自主部署项目(S202302)

Catalytic performances of engineered and artificial heme peroxygenases

Yiping Jianga,1, Zaw Ko Lattb,1, Zhiqi Conga,*()   

  1. aKey Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
    bBiotechnology Research Department, Ministry of Education, Kyaukse 05151, Myanmar
  • Received:2024-09-29 Accepted:2024-12-02 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: congzq@qibebt.ac.cn (Z. Cong).
  • About author:Prof. Cong Zhiqi (Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences) received his Ph.D. degree in Organic Chemistry from Kumamoto University, Japan, in 2009. From 2009 to 2016, he engaged in scientific research at the Institute for Molecular Science in Japan and Nagoya University. Since 2016, he has been a full professor and group leader at the current institute. He is Qingdao Innovative Leading Talent (2018) and Taishan Scholar of Shandong Province (2024). His research focuses on protein engineering, enzyme catalysis, and synthetic biology. He has firstly proposed the concepts of dual-functional small molecule (DFSM) and H2O2 tunnel engineering, successfully converting P450 monooxygenases to peroxizymes with high catalytic efficiencies. He has published over 50 peer-reviewed papers and holds 8 authorized patents.
    First author contact:

    1Contributed equally to this work.

  • Supported by:
    National Key Research and Development Program of China(2023YFA0915500);National Natural Science Foundation of China(32371311);National Natural Science Foundation of China(32471325);National Natural Science Foundation of China(22207112);Taishan Scholars Program(tstp20240841);CAS PIFI program(2019PB0167);QIBEBT/SEI/QNESL(S202302)

摘要:

过加氧酶是一类重要的氧化酶, 它们利用血红素作为辅基参与多种氧化反应. 与依赖辅酶和复杂电子传递系统的单加氧酶和双加氧酶相比, 过加氧酶能够直接在过氧化氢的驱动下催化底物氧化, 该过程更加简洁高效, 为有机合成、药物化学和合成生物学等领域提供了有力的工具. 然而, 天然血红素过加氧酶的种类有限, 催化底物谱范围较窄, 且活性有待进一步提升, 这限制了其在工业中的应用. 因此, 通过酶工程手段对血红素过加氧酶进行改造, 提升其催化性能, 成为当前研究的重要方向.

本文系统总结了近年来在血红素依赖性过加氧酶工程化改造领域, 特别是针对非特异性过加氧酶(UPO)、脂肪酸过加氧酶以及人工改造的P450过加氧酶研究的最新进展. 天然UPO具备相对广泛的催化底物谱, 因此改造方向主要集中在反应活性、选择性及酶稳定性的提升. 概述了通过晶体结构指导的定点突变和定向进化等技术, 得到的多种改性后的UPO突变体, 实现了稳定性、活性、选择性和底物谱等催化性能显著提升. 具体评析了改性UPO高效选择性催化生成多种包括维生素、药物代谢产物等高附加值非天然产物, 同时, 还介绍了UPO对有机过氧化物外消旋体中特定对映体选择性的富集效果. 此外, 针对天然P450脂肪酸过加氧酶, 特别是CYP152家族的成员, 如P450SPα, P450BSβ和P450OleT, 尽管野生型已有一定的过加氧反应能力, 但通过工程化手段可进一步拓宽其底物范围、增强催化效率并改善选择性. 文中概述了近期通过蛋白质工程手段改性的P450脂肪酸过加氧酶研究进展, 其中包括高效手性γ-内酯合成酶、苯乙烯环氧化酶等系列过加氧酶, 展示了工程化改性后的天然P450过加氧酶在精细化学品合成中的巨大潜力. 另外, 在P450单加氧酶向过加氧酶的人工转化方面, 研究人员通过定向进化、理性设计、双功能小分子(DFSM)辅助系统及H2O2通道工程等多种策略, 成功开发出高效的人工P450过加氧酶. 这些人工酶不仅保持了P450单加氧酶的高选择性和多样性, 还简化了催化循环, 提升了P450酶催化机制中过氧化氢旁路的利用效率, 避免了对昂贵辅酶及复杂电子传递系统的依赖, 以上具体改造策略亦在文中回顾总结.

综上所述, 本文系统总结了当前过加氧酶改性研究的最新进展, 详述了通过蛋白质工程手段提升过加氧酶催化性能的成功案例, 并探讨了这些酶在有机合成、药物制造等领域的广泛应用前景. 未来, 通过引入人工智能等新型工程化策略、进一步扩大底物范围并实现更多高附加值产物的催化, 将是该领域研究的重要方向. 因此, 随着研究的不断深入和技术的不断进步, 血红素依赖性过加氧酶有望在生物合成领域发挥重要作用, 推动合成方向的绿色可持续发展.

关键词: 过加氧酶, 过氧化氢, 细胞色素P450过加氧酶, 非特异性过加氧酶, 蛋白质工程

Abstract:

Heme peroxygenases exhibit remarkable catalytic versatility in facilitating a wide array of oxidative reactions under mild conditions, eliminating the need for coenzymes and intricate electron transport systems. This unique character underscores their essentiality and potential as promising tools in synthetic biology. Recent advancements in enzyme engineering have significantly enhanced the catalytic performance of both natural and artificial peroxygenases. Extensive engineering efforts have been directed towards unspecific peroxygenases and fatty acid peroxygenases, aiming to expand their substrate specificities, and enhance reaction selectivities, as well as increase enzyme stability. Furthermore, innovative strategies such as dual-functional small molecule-assisted systems and H2O2 tunnel engineering have been harnessed to transform P450 monooxygenases into highly efficient peroxygenases, capable of catalyzing reactions with a variety of unnatural substrates. This review consolidates the latest progress in the engineered and artificial heme peroxygenases, emphasizing their catalytic performances as potent biocatalysts for sustainable organic synthesis.

Key words: Peroxygenases, Hydrogen peroxide, Cytochrome P450 peroxygenases, Unspecific peroxygenases, Protein engineering