催化学报 ›› 2025, Vol. 69: 35-51.DOI: 10.1016/S1872-2067(24)60206-8
姜谊平a,1, Zaw Ko Lattb,1, 丛志奇a,*()
收稿日期:
2024-09-29
接受日期:
2024-12-02
出版日期:
2025-02-18
发布日期:
2025-02-10
通讯作者:
电子信箱: 作者简介:
第一联系人:1共同第一作者.
基金资助:
Yiping Jianga,1, Zaw Ko Lattb,1, Zhiqi Conga,*()
Received:
2024-09-29
Accepted:
2024-12-02
Online:
2025-02-18
Published:
2025-02-10
Contact:
E-mail: About author:
Prof. Cong Zhiqi (Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences) received his Ph.D. degree in Organic Chemistry from Kumamoto University, Japan, in 2009. From 2009 to 2016, he engaged in scientific research at the Institute for Molecular Science in Japan and Nagoya University. Since 2016, he has been a full professor and group leader at the current institute. He is Qingdao Innovative Leading Talent (2018) and Taishan Scholar of Shandong Province (2024). His research focuses on protein engineering, enzyme catalysis, and synthetic biology. He has firstly proposed the concepts of dual-functional small molecule (DFSM) and H2O2 tunnel engineering, successfully converting P450 monooxygenases to peroxizymes with high catalytic efficiencies. He has published over 50 peer-reviewed papers and holds 8 authorized patents.1Contributed equally to this work.
Supported by:
摘要:
过加氧酶是一类重要的氧化酶, 它们利用血红素作为辅基参与多种氧化反应. 与依赖辅酶和复杂电子传递系统的单加氧酶和双加氧酶相比, 过加氧酶能够直接在过氧化氢的驱动下催化底物氧化, 该过程更加简洁高效, 为有机合成、药物化学和合成生物学等领域提供了有力的工具. 然而, 天然血红素过加氧酶的种类有限, 催化底物谱范围较窄, 且活性有待进一步提升, 这限制了其在工业中的应用. 因此, 通过酶工程手段对血红素过加氧酶进行改造, 提升其催化性能, 成为当前研究的重要方向.
本文系统总结了近年来在血红素依赖性过加氧酶工程化改造领域, 特别是针对非特异性过加氧酶(UPO)、脂肪酸过加氧酶以及人工改造的P450过加氧酶研究的最新进展. 天然UPO具备相对广泛的催化底物谱, 因此改造方向主要集中在反应活性、选择性及酶稳定性的提升. 概述了通过晶体结构指导的定点突变和定向进化等技术, 得到的多种改性后的UPO突变体, 实现了稳定性、活性、选择性和底物谱等催化性能显著提升. 具体评析了改性UPO高效选择性催化生成多种包括维生素、药物代谢产物等高附加值非天然产物, 同时, 还介绍了UPO对有机过氧化物外消旋体中特定对映体选择性的富集效果. 此外, 针对天然P450脂肪酸过加氧酶, 特别是CYP152家族的成员, 如P450SPα, P450BSβ和P450OleT, 尽管野生型已有一定的过加氧反应能力, 但通过工程化手段可进一步拓宽其底物范围、增强催化效率并改善选择性. 文中概述了近期通过蛋白质工程手段改性的P450脂肪酸过加氧酶研究进展, 其中包括高效手性γ-内酯合成酶、苯乙烯环氧化酶等系列过加氧酶, 展示了工程化改性后的天然P450过加氧酶在精细化学品合成中的巨大潜力. 另外, 在P450单加氧酶向过加氧酶的人工转化方面, 研究人员通过定向进化、理性设计、双功能小分子(DFSM)辅助系统及H2O2通道工程等多种策略, 成功开发出高效的人工P450过加氧酶. 这些人工酶不仅保持了P450单加氧酶的高选择性和多样性, 还简化了催化循环, 提升了P450酶催化机制中过氧化氢旁路的利用效率, 避免了对昂贵辅酶及复杂电子传递系统的依赖, 以上具体改造策略亦在文中回顾总结.
综上所述, 本文系统总结了当前过加氧酶改性研究的最新进展, 详述了通过蛋白质工程手段提升过加氧酶催化性能的成功案例, 并探讨了这些酶在有机合成、药物制造等领域的广泛应用前景. 未来, 通过引入人工智能等新型工程化策略、进一步扩大底物范围并实现更多高附加值产物的催化, 将是该领域研究的重要方向. 因此, 随着研究的不断深入和技术的不断进步, 血红素依赖性过加氧酶有望在生物合成领域发挥重要作用, 推动合成方向的绿色可持续发展.
姜谊平, Zaw Ko Latt, 丛志奇. 血红素依赖的工程化改性过加氧酶的催化性能研究最新进展[J]. 催化学报, 2025, 69: 35-51.
Yiping Jiang, Zaw Ko Latt, Zhiqi Cong. Catalytic performances of engineered and artificial heme peroxygenases[J]. Chinese Journal of Catalysis, 2025, 69: 35-51.
Fig. 2. Active sites of UPO from) Agrocybe aegerita (PDB ID: 2YP1) (A and Marasmius rotula (PDB ID: 5FUJ) (B). The hydrogen bonds and measured distances (?) are drawn by dashed lines in yellow and black, respectively. The acid-base pairs and heme are shown as stick models in white and magenta, respectively.
Fig. 8. Structural alignment of PaDa-I (PDB ID: 5OXU, colored in white) and Fett (PDB ID: 7PN6, colored in yellow). The heme cavity is narrowed by introducing a bulky leucine residue. The cavities are shown as surface models.
Fig. 10. Active sites of P450SPα in complex with Palmitic acid (PDB ID: 3AWM) (A) and (R)-ibuprofen (PDB ID: 3VM4) (B). The hydrogen bonds and measured distances (?) are drawn by dashed lines in yellow and black, respectively. The substrate, decoy molecule, and heme are shown as stick models in green, yellow and magenta, respectively.
Fig. 13. Active sites of P450BSβ mutants in complex with Palmitic acid (PDB ID: 7WYG) (A) and Palmitoleic acid (PDB ID: 8HKD) (B). The hydrogen bonds and measured distances (?) are drawn by dashed lines in yellow and black, respectively. The substrate and heme are shown as stick models in green and magenta, respectively.
Fig. 14. Active site of CYP199A4 in complex with 4-methoxybenzoic acid (PDB ID: 7REH). The hydrogen bonds and measured distances (?) are drawn by dashed lines in yellow and black, respectively. The substrate and heme are shown as stick models in green and magenta, respectively.
Fig. 15. (A) The conceptual graph of DFSM-facilitated P450 peroxygenase. The DFSM is fixed at the specific site of P450 enzyme by the anchoring group, while the catalytic group is responsible for H2O2 activation. (B) The chemical structure of Im-C6-Phe. The anchoring and catalytic groups are labelled as green rectangle and magenta circle, respectively.
Fig. 20. Active site of the P450BM3 mutants in complex with DFSMs. (A) Toluene (PDB ID: 7YDB); (B) ethylbenzene (PDB ID: 7YD9); (C) propylbenzene (PDB ID: 7YDD); (D) indane (PDB ID: 7YFT). DFSMs, heme and alkylbenzenes are shown as stick models in yellow, magenta, and cyan, respectively.
Fig. 21. The evolution of novel DFSMs and their catalytic performances. (A) The idea of evolving dipeptide based novel artificial cofactor. (B) Hydrogen-bonding networks and hydrophobic interactions between the enzyme and Im-C6-Phe-Phe. The hydrophobic binding pocket is denoted as stick and surface models colored in white. The hydrogen bonds and measured distances are shown by dashed lines in yellow and black, respectively. (C) The chemical structures of novel DFSMs. Each DFSM contains a catalytic base (imidazole, amine or pyridine) and a dipeptide-liked anchoring group (R1, R2: side chain of natural or unnatural amino acid). Binding affinity and reaction performance of novel DFSMs. (D) Binding affinity of representative novel DFSMs. (E) Concentration gradient experiments of representative DFSMs for styrene epoxidation reaction.
|
[1] | 肖建洲, 赵致灏, 张楠楠, 车宏途, 乔秀, 张光颖, 初小宇, 王雅, 董鸿, 张凤鸣. 共价有机框架中的连接工程用于在水和空气中光催化全合成H2O2[J]. 催化学报, 2025, 69(2): 219-229. |
[2] | 夏兵全, 刘高雄, 樊坤, 陈润东, 刘欣, 李来全. 基于双氧还原中心的共价三嗪框架构建的1D/2D S型异质结促进过氧化氢光合作用[J]. 催化学报, 2025, 69(2): 315-326. |
[3] | 张棋祺, 苗慧, 王俊, 孙涛, 刘恩周. In2.77S4/K+掺杂g-C3N4自组装S型异质结光催化H2O和O2合成H2O2[J]. 催化学报, 2024, 63(8): 176-189. |
[4] | 任卫杰, 李宁, 常青, 武杰, 杨金龙, 胡胜亮, 康振辉. 通过碳点从共价三嗪框架中提取光生空穴用于光合作用产过氧化氢[J]. 催化学报, 2024, 62(7): 178-189. |
[5] | 刘高雄, 陈润东, 夏兵全, 吴珍, 刘善堂, 冉景润. 共价有机框架基光催化剂合成过氧化氢和高价值化学品的最新进展[J]. 催化学报, 2024, 61(6): 97-110. |
[6] | 谷苗莉, 杨祎, 程蓓, 张留洋, 肖鹏, 陈涛. 利用电荷分离调控S型异质结光催化氧化产物选择性[J]. 催化学报, 2024, 59(4): 185-194. |
[7] | 孟令辉, 赵晨, 楚弘宇, 李渝航, 付会芬, 王鹏, 王崇臣, 黄洪伟. g-C3N4/PCN-224“壳-核”结构异质结压电-光催化协同高效制备过氧化氢[J]. 催化学报, 2024, 59(4): 346-359. |
[8] | 蔡豪, 陈芳, 胡程, 葛伟怡, 李彤, 张晓磊, 黄洪伟. 富含氧空位的Bi4O5Br2超薄纳米片用于高效压电催化生成过氧化氢[J]. 催化学报, 2024, 57(2): 123-132. |
[9] | 余治晗, 张岱南, 艾陈斌, 张建军, 向全军. 双连接工程D-π-A体系中光合作用生成H2O2的动态质子迁移[J]. 催化学报, 2024, 67(12): 71-81. |
[10] | 田甜, 王婉婷, 王怡萍, 李可欣, 李园园, 付文升, 丁勇. CoOx促进Mo掺杂BiVO4光电催化H2O2合成及原位降解污染物[J]. 催化学报, 2024, 67(12): 176-185. |
[11] | 张文娟, 刘钢. 光驱动水和氧气合成过氧化氢的有机框架催化剂的分子调控[J]. 催化学报, 2024, 66(11): 76-109. |
[12] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[13] | 吴殷琦, 陈倩倩, 陈琦, 耿强, 张巧玉, 郑宇璁, 赵晨, 张龑, 周佳海, 王斌举, 许建和, 郁惠蕾. 精准调控Baeyer-Villiger单加氧酶的底物选择性以避免拉唑亚砜的过氧化[J]. 催化学报, 2023, 51(8): 157-167. |
[14] | 程璐, 陈许宁, 胡培君, 曹宵鸣. 双氧水对于单核铜分子筛催化甲烷直接氧化制甲醇反应性能的利弊[J]. 催化学报, 2023, 51(8): 135-144. |
[15] | 孟帅奇, 李忠玉, 季宇, Anna Joelle Ruff, 刘珞, Mehdi D. Davari, Ulrich Schwaneberg. 电子转移途径中芳香族氨基酸的引入提高了细胞色素P450s的催化性能[J]. 催化学报, 2023, 49(6): 81-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||