催化学报 ›› 2024, Vol. 66: 76-109.DOI: 10.1016/S1872-2067(24)60143-9

• 综述 • 上一篇    下一篇

光驱动水和氧气合成过氧化氢的有机框架催化剂的分子调控

张文娟a,b, 刘钢a,b,*()   

  1. a吉林大学化学学院, 无机合成与制备化学国家重点实验室, 吉林长春 130012
    b吉林大学化学学院, 吉林长春 130012
  • 收稿日期:2024-06-06 接受日期:2024-09-09 出版日期:2024-11-18 发布日期:2024-11-10
  • 通讯作者: *电子信箱: lgang@jlu.edu.cn (刘钢).
  • 基金资助:
    国家重点研发计划(2023YFA1506300);国家自然科学基金(22072054);国家自然科学基金(21972053);国家自然科学基金(22161132009);吉林省科技发展计划(20230101050JC);吉林省教育厅科研项目(JJKH20231126KJ);无机合成与制备化学国家重点实验室开放项目(2024-4)

Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts

Wenjuan Zhanga,b, Gang Liua,b,*()   

  1. aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
    bCollege of Chemistry, Jilin University, Changchun 130012, Jilin, China
  • Received:2024-06-06 Accepted:2024-09-09 Online:2024-11-18 Published:2024-11-10
  • Contact: *E-mail: lgang@jlu.edu.cn (G. Liu).
  • About author:Gang Liu (College of Chemistry, Jilin University) received his B.S. in 2002 and Ph.D degree in 2007 from Jilin University. Since the end of 2007, he has been working in College of Chemistry, Jilin University. From 2010 to 2012, he did postdoctoral research at the State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. From 2018 to 2019, he worked as a visiting scholar at Dalhousie University in Canada. His research focuses mainly on selective catalytic oxidation and energy photocatalysis using molecular oxygen as the oxygen source. He has published more than 70 peer-reviewed papers and has been granted more than 10 patents, three of which have been successfully transformed into practical applications. He was invited as a young member of the editorial board of Chin. J. Catal. since 2017.
  • Supported by:
    National Key R&D Program of China(2023YFA1506300);National Natural Science Foundation of China(22072054);National Natural Science Foundation of China(21972053);National Natural Science Foundation of China(22161132009);Jilin Scientific and Technological Development Program(20230101050JC);Scientific Research Project of Jilin Provincial Department of Education(JJKH20231126KJ);Open Project of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry(2024-4)

摘要:

过氧化氢(H2O2)作为一种环境友好型氧化剂, 广泛应用于工业生产、环境保护和医疗卫生等领域. 传统工业合成H2O2的方法主要通过蒽醌法, 但该方法能耗高且环境污染严重. 太阳能驱动下的以水和氧气为原料的路线被认为是一种合成H2O2的理想方法. 由于半导体中光生电荷载流子分离效率较差, 通常需要添加乙醇等牺牲试剂以消耗光生空穴, 但这不是一个能量存储过程. 因此, 开发能够在无需牺牲剂条件下, 直接从纯水和氧气中高效生产H2O2的光催化剂, 对于实现可持续能源转换至关重要. 有机框架材料凭借其可调控的结构特性, 在纯水体系下的H2O2光合成领域被广泛关注. 系统地总结有机框架光催化剂在H2O2合成领域的最新研究进展, 对于推动该领域的发展具有重要价值.

本文系统总结了有机框架光催化剂在纯水体系下合成H2O2的最新研究进展, 重点关注有机框架的功能单体在优化光电性能及活化氧气和水分子方面的关键作用. 首先, 简要介绍了评估光催化合成H2O2性能的关键参数. 然后, 简要阐述了光催化合成H2O2的反应机理, 并介绍了探究这些机理所需的表征技术和理论方法. 其后, 总结了有机框架光催化剂的设计原则和关键策略, 包括增强光吸收与利用、提高电荷载流子的分离与迁移效率以及优化表面氧化还原反应动力学, 并概述了这些光催化剂的主要合成方法. 在此基础上, 深入分析了有机框架材料的骨架结构, 探讨了不同功能基团(含氧官能团、含氮官能团、含硫官能团等)在构建有机框架光催化剂中的作用, 以及它们如何影响光催化反应路径、活性位点的形成和催化性能. 最后, 简要总结了有机框架光催化剂在纯水系统中合成H2O2所面临的挑战与未来的发展方向: (1) 尽管有机框架材料的设计空间巨大, 但能够驱动氧还原或水氧化反应的官能团种类相对有限. 开发新的功能基团和探索新的合成方法是开发有效有机框架光催化剂的关键. (2) 目前功能基团的选择仍然缺乏系统的设计方法, 利用理论计算和机器学习技术预测有机框架的带边位置和光电性质, 有助于揭示不同构建块之间的相互作用, 并加快材料设计过程. (3) 为了推进有机框架光催化剂的合理设计, 获得更直接的实验表征以分析有机框架光催化剂的精确结构和组成, 并深入理解它们的结构-性能关系. 因此, 综合运用和发展原位表征技术将有助于设计更高效的催化剂. (4) 一方面, 应探索更经济、适宜大规模制备的有机框架光催化剂构建策略; 另一方面, 可以将光催化技术与其他技术相结合, 以满足H2O2大规模工业化生产的需求.

综上, 本综述全面梳理了有机框架光催化剂在纯水系统下光催化合成H2O2领域的研究进展、设计策略以及面临的挑战和未来的发展机遇, 希望能够为科研人员提供创新的思考方向, 进而为高效有机框架光催化剂的设计和应用提供参考.

关键词: 有机框架, 光催化剂, 过氧化氢光合成, 分子工程, 太阳能转化

Abstract:

H2O2 is an environmentally friendly oxidant and a promising energy-containing molecule widely applied in industrial production, environmental remediation, and as a potential carrier for energy storage. Solar-driven conversion of earth-abundant H2O and O2 is the most ideal method for producing H2O2. Due to poor separation of photogenerated charge carriers in semiconductors, sacrificial reagents such as ethanol are typically added to consume photogenerated holes, but this is not an energy storage process. Therefore, developing efficient photocatalysts for direct H2O2 production from H2O and O2 without sacrificial agents is crucial for sustainable energy conversion. Organic framework materials, due to their customizable structures, have gained traction in the photosynthesis of H2O2 from pure H2O and O2. A series of functionalized molecules have been introduced as building blocks into organic frameworks to enhance the H2O2 production performance, but their key roles in performance and reaction pathways have not been summarized in detail so far. This review aims to address this gap and elucidate the relationship between the structure and performance of organic framework photocatalysts, providing insights and guidance for the development of efficient photocatalysts.

Key words: Organic framework, Photocatalyst, H2O2 photosynthesis, Molecular engineering, Solar energy conversion