催化学报 ›› 2024, Vol. 66: 76-109.DOI: 10.1016/S1872-2067(24)60143-9
收稿日期:
2024-06-06
接受日期:
2024-09-09
出版日期:
2024-11-18
发布日期:
2024-11-10
通讯作者:
*电子信箱: lgang@jlu.edu.cn (刘钢).
基金资助:
Wenjuan Zhanga,b, Gang Liua,b,*()
Received:
2024-06-06
Accepted:
2024-09-09
Online:
2024-11-18
Published:
2024-11-10
Contact:
*E-mail: About author:
Gang Liu (College of Chemistry, Jilin University) received his B.S. in 2002 and Ph.D degree in 2007 from Jilin University. Since the end of 2007, he has been working in College of Chemistry, Jilin University. From 2010 to 2012, he did postdoctoral research at the State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. From 2018 to 2019, he worked as a visiting scholar at Dalhousie University in Canada. His research focuses mainly on selective catalytic oxidation and energy photocatalysis using molecular oxygen as the oxygen source. He has published more than 70 peer-reviewed papers and has been granted more than 10 patents, three of which have been successfully transformed into practical applications. He was invited as a young member of the editorial board of Chin. J. Catal. since 2017.
Supported by:
摘要:
过氧化氢(H2O2)作为一种环境友好型氧化剂, 广泛应用于工业生产、环境保护和医疗卫生等领域. 传统工业合成H2O2的方法主要通过蒽醌法, 但该方法能耗高且环境污染严重. 太阳能驱动下的以水和氧气为原料的路线被认为是一种合成H2O2的理想方法. 由于半导体中光生电荷载流子分离效率较差, 通常需要添加乙醇等牺牲试剂以消耗光生空穴, 但这不是一个能量存储过程. 因此, 开发能够在无需牺牲剂条件下, 直接从纯水和氧气中高效生产H2O2的光催化剂, 对于实现可持续能源转换至关重要. 有机框架材料凭借其可调控的结构特性, 在纯水体系下的H2O2光合成领域被广泛关注. 系统地总结有机框架光催化剂在H2O2合成领域的最新研究进展, 对于推动该领域的发展具有重要价值.
本文系统总结了有机框架光催化剂在纯水体系下合成H2O2的最新研究进展, 重点关注有机框架的功能单体在优化光电性能及活化氧气和水分子方面的关键作用. 首先, 简要介绍了评估光催化合成H2O2性能的关键参数. 然后, 简要阐述了光催化合成H2O2的反应机理, 并介绍了探究这些机理所需的表征技术和理论方法. 其后, 总结了有机框架光催化剂的设计原则和关键策略, 包括增强光吸收与利用、提高电荷载流子的分离与迁移效率以及优化表面氧化还原反应动力学, 并概述了这些光催化剂的主要合成方法. 在此基础上, 深入分析了有机框架材料的骨架结构, 探讨了不同功能基团(含氧官能团、含氮官能团、含硫官能团等)在构建有机框架光催化剂中的作用, 以及它们如何影响光催化反应路径、活性位点的形成和催化性能. 最后, 简要总结了有机框架光催化剂在纯水系统中合成H2O2所面临的挑战与未来的发展方向: (1) 尽管有机框架材料的设计空间巨大, 但能够驱动氧还原或水氧化反应的官能团种类相对有限. 开发新的功能基团和探索新的合成方法是开发有效有机框架光催化剂的关键. (2) 目前功能基团的选择仍然缺乏系统的设计方法, 利用理论计算和机器学习技术预测有机框架的带边位置和光电性质, 有助于揭示不同构建块之间的相互作用, 并加快材料设计过程. (3) 为了推进有机框架光催化剂的合理设计, 获得更直接的实验表征以分析有机框架光催化剂的精确结构和组成, 并深入理解它们的结构-性能关系. 因此, 综合运用和发展原位表征技术将有助于设计更高效的催化剂. (4) 一方面, 应探索更经济、适宜大规模制备的有机框架光催化剂构建策略; 另一方面, 可以将光催化技术与其他技术相结合, 以满足H2O2大规模工业化生产的需求.
综上, 本综述全面梳理了有机框架光催化剂在纯水系统下光催化合成H2O2领域的研究进展、设计策略以及面临的挑战和未来的发展机遇, 希望能够为科研人员提供创新的思考方向, 进而为高效有机框架光催化剂的设计和应用提供参考.
张文娟, 刘钢. 光驱动水和氧气合成过氧化氢的有机框架催化剂的分子调控[J]. 催化学报, 2024, 66: 76-109.
Wenjuan Zhang, Gang Liu. Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts[J]. Chinese Journal of Catalysis, 2024, 66: 76-109.
Fig. 1. A brief timeline of the development of representative organic framework materials for photocatalytic H2O2 production. RF-resins. Reprinted with permission from Ref. [48]. Copyright 2019, Springer Nature. CTF-BDDBN. Reprinted with permission from Ref. [75]. Copyright 2020, John Wiley and Sons. TPE-AQ. Reprinted with permission from Ref. [111]. Copyright 2021, National Academy of Science. COF-TfpBpy. Reprinted with permission from Ref. [122]. Copyright 2022, John Wiley and Sons. TTF-BT-COF. Reprinted with permission from Ref. [80]. Copyright 2023, John Wiley and Sons. BBTZ. Reprinted with permission from Ref. [87]. Copyright 2023, John Wiley and Sons.
Fig. 4. (a) In situ DRIFTS spectra for H2O2 photosynthesis at 2700-3000 and 850-1150 cm-1. Reprinted with permission from Ref. [85]. Copyright 2023, John Wiley and Sons. EPR trapping experiments of (b) DMPO-?OH. Reprinted with permission from Ref. [86]. Copyright 2023, Elsevier B.V. (c) DMPO-?O2-, and (d) TEMP-1O2. (e) Photocatalytic H2O2 evolution in pure H2O, 1 mmol L-1 β-carotene, AgNO3 and BQ solutions under the same conditions. (f) EPR trapping experiments of TEMP-1O2 in H2O with the addition of BQ. Reprinted with permission from Ref. [87]. Copyright 2023, John Wiley and Sons.
Fig. 5. (a) Linear-sweep RDE voltammograms and corresponding Koutecky-Levich plots. (b) The RRDE polarization curves in Ar atmosphere (rotating speed: 1000 r min-1) with Pt ring electrode (potential: 0.6 V vs. Ag/AgCl) to detect H2O2. Inset figure shows the magnified ring current. (c) The RRDE polarization curves in Ar atmosphere (rotating speed of 1000 r min-1) with the potential of Pt ring electrode set at -0.23 V (vs. Ag/AgCl) to detect O2. Reprinted with permission from Ref. [88]. Copyright 2024, John Wiley and Sons. (d) Polarization curves recorded with simultaneous detection of H2O2 at the ring electrode at 1600 r min-1. Reprinted with permission from Ref. [89]. Copyright 2023, John Wiley and Sons.
Fig. 6. (a) The HOMO of Hz-TP-BT-COF photocatalyst. (b) The LUMO of Hz-TP-BT-COF photocatalyst. Reprinted with permission from Ref. [90]. Copyright 2024, Springer Nature. (c) Top and side views of the atomic structure with different charge densities for O2 adsorption on TTP. Eads and qO2 represent the adsorption energy of O2 and the accumulated electron charge on O2, respectively. Reprinted with permission from Ref. [91]. Copyright 2024, John Wiley and Sons.
Fig. 7. (a) Synthetic routes and molecular structures of TPE-COF-OH, TPB-COF-OH, and TPP-COF-OH. (b) Configuration of *OOH intermediates on TPB-COF-OH. (c) Configuration of *OOH intermediates on TPB-COF-OMe. (d) Free energy diagrams of TPE-COF-OH, TPB-COF-OH, TPP-COF-OH, and TPB-COF-OMe for the photosynthesis of H2O2 via ORR. (e) Adsorption configuration of *OOH intermediates on TPE-COF-OH without phenolic quinone transformation. (f) Free energy diagrams of TPBCOF-OH for the photosynthesis of H2O2 through the phenolic quinone transformation pathway and nonphenolic quinone transformation pathway. (g) Proposed reaction mechanism toward H2O2 production on the catechol moiety. Reprinted with permission from Ref. [92]. Copyright 2024, American Chemical Society.
Fig. 10. The mechanism behind the excellent performance in photosynthesis of H2O2 by TPT-alkynyl-AQ. Reprinted with permission from Ref. [97]. Copyright 2021, National Academy of Science.
Fig. 12. (a) Structure of the RF resins. (b) π-conjugated and π-stacked D-A units in the RF resins. (c) Diffuse reflectance UV-vis spectra of the catalysts. Inset, tauc plots of RF523 and the resin recovered after photoreaction for 5 h by a solar simulator. (d) Electrochemical impedance spectroscopy (EIS) Nyquist plots of the resins measured in 0.1 mol L-1 KCl under visible light at a bias of 0.8 V (vs. Ag/AgCl) in the frequency range of 10 mHz to 10 kHz. Inset, equivalent circuit model, comprising ohmic resistance (RS), double-layer capacitance (CDL) and charge transfer resistance (RCT). (e) Changes in the amounts of H2O2 generated on RF523 and the SCC efficiency under AM1.5G simulated sunlight (1 sun) irradiation. Reprinted with permission from Ref. [48]. Copyright 2019, Springer Nature. (f) Structure of P3HT. Reprinted with permission from Ref. [104]. Copyright 2021, American Chemical Society. (g) Schematic representation of RF-DHAQ. (h) TA kinetics of RF and RF-DHAQ-2 probed at 550 nm under air or N2. (i) H2O2 production of DHAQ, RF, RF-DHAQ-1, RF-DHAQ-2, RFDHAQ-3 and RF-DHAQ-4. (j) Reaction mechanisms of RF-DHAQ. Reprinted with permission from Ref. [108]. Copyright 2022, John Wiley and Sons.
Fig. 13. (a) Schematic illustration for the synthesis of AQTEE-COP and NATEE-COP. (b) Electrostatic potential-mapped molecular van der Waals surface; LUMO and HOMO for model compounds. Reprinted with permission from Ref. [109]. Copyright 2022, American Chemical Society. (c) The schematic illustration showing the proposed mechanism on photocatalytic H2O2 production in pure H2O over TpAQ-COF. Reprinted with permission from Ref. [110]. Copyright 2023, Elsevier B.V.
Fig. 14. (a) The structures and synthesis of TPE-AQ and TPE-AC. (b) The electron paramagnetic resonance spectra of the CPs under ambient conditions. (c) DRITFS spectra of light and dark process of TPE-AQ. (d) The photocatalytic pathway for H2O2 production by TPE-AQ. Reprinted with permission from Ref. [111]. Copyright 2021, National Academy of Science.
Fig. 15. (a) UV-vis-NIR DRS of SA-TCPP supramolecule and UV-vis absorption spectrum of TCPP molecules. (b) Band edge potentials for SA-TCPP. (c) H2O2 production on SA-TCPP photocatalyst at 293 K plotted as a function of irradiation time. (d) HPLC for SA-TCPP before and after reaction. (e) The molecular ion peak obtained from the ESI (?)-TOF-MS spectrum for the 2.4 min HPLC peak. (f) The proposed schematics for H2O2 production on SA-TCPP by holes according to the isotopic experiments. Reprinted with permission from Ref. [21]. Copyright 2023, Springer Nature. (g) UV spectra of PBNCZ and PBNCZ-COO?. (h) Photocurrent curves of PBNCZ and PBNCZ-COO?. (i) Photocatalytic H2O2 production over PBNCZ and PBNCZ-COO?. Reprinted with permission from Ref. [116]. Copyright 2023, John Wiley and Sons.
Fig. 16. (a) Synthetic routes of TBTN-COF and TMT-COF. (b) EPR spectra of the reaction systems in the dark and under visible light. (c) CSS kinetic trace of TBTN-COF and TMT-COF. (d) Mechanism for photocatalytic H2O2 production on the surface. (e) Calculated electron distributions of TBTN-COF/TMT-COF and the charge difference during the formation of ?O2- on TBTN active site (the yellow/blue part represent the increase/decrease of electron density). Reprinted with permission from Ref. [118]. Copyright 2024, John Wiley and Sons. (f) Electrostatic potential surface of COF-0CN, COF-1CN and COF-2CN. Reprinted with permission from Ref. [96]. Copyright 2024, John Wiley and Sons.
Fig. 17. (a) Preparation of D-A polymers by the combination of supramolecular chemistry with thermal polymerization. (b) Photocatalytic H2O2 production performance over various samples. (c) ESR spectra of DMPO-?O2? over NMT400 and AMT400. Reprinted with permission from Ref. [119]. Copyright 2022, John Wiley and Sons. (d) Synthetic routes toward HEP-TAPT-COF and HEP-TAPB-COF. (e) The schematic diagram of photocatalytic H2O2 production for the HEP-TAPT-COF. (f) SCC efficiencies of HEP-COFs and other reported COF-based photocatalysts. (g) Calculated free energy diagrams of four-electron water oxidation pathway on different active sites in HEP-TAPT-COF. (h) The schematic diagram of photocatalytic H2O2 production for the HEP-TAPT-COF. Reprinted with permission from Ref. [78]. Copyright 2022, John Wiley and Sons.
Fig. 18. (a) Pictorial demonstration of chemical structures of DAzCOFs with different relative nitrogen locations. (b) Relative photocatalytic H2O2 production rate of TpMd with different scavengers. (c) EPR spectra of the photocatalytic system based on TpDz in the dark and after 5-min irradiation of visible light. Conditions: solvent: methanol, spin trapper: DMPO. (d) Koutecky-Levich plots obtained by RDE measurements at -1.0 V (vs. Ag/AgCl). Reprinted with permission from Ref. [85]. Copyright 2023, John Wiley and Sons. (e) Comparison reaction profiles of 2e- ORR and 4e- WOR over of o-COF-TpPzda and p-COF-TpPzda. The Gibbs free energy (ΔG) values of RDS for both 4e- WOR and 2e- ORR on o-COF-TpPzda and p-COF-TpBda are also indicated. Reprinted with permission from Ref. [121]. Copyright 2024, John Wiley and Sons.
Fig. 19. (a) Schematic diagram of synthesis of COF-TfpBpy with bipyridine active sites. (b) solar-to-chemical conversion efficiency of COF-TfpBpy. (c) Photocatalytic mechanism of H2O2 synthesis in the presence of COF-TfpBpy. (d) H2O2 photocatalysis rates of different COFs and amorphous polymer photocatalysts. Reprinted with permission from Ref. [122]. Copyright 2022, John Wiley and Sons. (e) Design strategies and synthesis routes of TBD-COF and TBC-COF. (f) H2O2 photoproduction rate of TBD-COF and TBC-COF in different atmospheres. (g) H2O2 yields over TBD-COF and TBC-COF in the presence of TEMPOL (1 mmol L-1) and β-carotene (1 mmol L-1) under illumination for 1 h in O2. (h) EPR signals of O21 produced by TBD-COF and TBC-COF. (i) Quantity of H2O2 produced over TBD-COF and TBC-COF in Ar in the presence of KBrO3 (1 mmol L-1) and CH3OH (10%). Reprinted with permission from Ref. [123]. Copyright 2024, John Wiley and Sons.
Fig. 20. (a) Synthetic pathways of BD-COF, Bpy-COF, and PyIm-COF. (b) UV-vis DRS. (c) The O2 adsorption site and configuration on Bpy-COF and PyIm-COF. (d) The adsorption energy of O2 on optimum site of BD-COF, Bpy-COF and PyIm-COF. (e) Free-energy diagrams for the reduction of O2 to H2O2 on the BD-COF, Bpy-COF and PyIm-COF. (f) Proposed mechanism of H2O2 generation via direct one-step 2e? ORR on PyIm-COF. Reprinted with permission from Ref. [124]. Copyright 2024, John Wiley and Sons.
Fig. 21. (a) Synthetic routes of C-COFs, S-COFs, and FS-COFs. (b) The O2-TPD curves of CCOFs and FS-COFs. (c) The O2 adsorption site and configuration on FS-COFs. (d) Key steps of H2O2 production by FS-COFs. Reprinted with permission from Ref. [89]. Copyright 2023, John Wiley and Sons. In situ ATR-SEIRAS spectra vs illumination time for the photocatalytic system of FS-OHOMe-COF (e) and TP-COF (f). Reprinted with permission from Ref. [98]. Copyright 2024, John Wiley and Sons.
Fig. 22. (a) Illustrations for the synthesis of TD-COF and TT-COF. (b) UV/Vis diffuse reflectance spectra and Tauc plots of TDCOF and TT-COF. Reprinted with permission from Ref. [95]. Copyright 2023, John Wiley and Sons. (c) Synthesis of TpaBtt, TapbBtt and TaptBtt. (d) Directionality of electron transfer between functionalmotifs and imine linkage in TpaBtt, TapbBtt, and TaptBtt. The yellow dashed lines represent motifs and red dashed lines represent imine bonds. The shade of the color represents the difference in energy. (e) Transient photocurrents of TpaBtt, TapbBtt, and TaptBtt under λ > 420 nm. (f) Photoluminescence spectra of TpaBtt, TapbBtt, and TaptBtt. (g) Mechanism of TaptBtt for photocatalytic H2O2 formation. The white, gray, blue, yellow and red spheres refer to hydrogen, carbon, nitrogen sulfur and oxygen, respectively. Reprinted with permission from Ref. [125]. Copyright 2023, Springer Nature.
Fig. 23. (a) The structure of Bpu-CTF, and Bpt-CTF. (b) Illustration of the charge distribution near the surface of Bpt-CTF from TDDFT calculations. (c) Mechanism for photocatalytic H2O2 production on the surface of Bpt-CTF. Reprinted with permission from Ref. [76]. Copyright 2022, John Wiley and Sons. (d) Polymer catalyst synthesis procedure. (e) UV-vis DRS spectra. (f) ESR spectra of DMPO-?O2- obtained in methanol solution with TTP and TBP. (g) Photocatalytic O2 evolution by TTP and TBP with NaIO3 (2.5 mmol L?1) as a sacrificial electron acceptor. Reprinted with permission from Ref. [91]. Copyright 2024, John Wiley and Sons. (h) The overall H2O2 photosynthesis over TDB-COF. Reprinted with permission from Ref. [86]. Copyright 2023, Elsevier B.V.
Fig. 24. (a) Synthetic routes and D-π-A model and differences of COFs with azoles linkages. Reprinted with permission from Ref. [79]. Copyright 2023, John Wiley and Sons. (b) The structure of Tz, BTz, TBTz and BBTz prepared through aldimine condensation. (c) Typical time course of photocatalytic H2O2 production over different catalysts in pure water under simulated sunlight irradiation. (d) Photocatalytic H2O2 formation and decomposition rate constant of samples. (e) H2O2 evolution rates of BBTz at different O2 concentrations. (f) ?O2? and 1O2 conversion pathways for the O2 reduction to H2O2 on the benzene site and benzobisthiazole site with DFT-calculated Gibbs free energy. (g) The proposed mechanism of photocatalytic H2O2 production on BBTz (The color of the pellet corresponds to different atoms. gray: C; yellow: S; blue: N, red: O; green and white: H). Reprinted with permission from Ref. [87]. Copyright 2023, John Wiley and Sons.
Fig. 25. (a) Scheme of the synthesis of CTF-BPDCN, CTF-EDDBN, and CTF-BDDBN from their corresponding precursors. Calculated free energy diagrams of two-electron water oxidization pathway toward H2O2 production on different active sites: (b) triazine structure in all CTFs, (c) benzene group in all CTFs, (d) acetylene linker in CTF-EDDBN, and (e) diacetylene linker in CTF-BDDBN. Reprinted with permission from Ref. [75]. Copyright 2020, John Wiley and Sons.
Fig. 26. (a) Structure and characterization of TPB and AOF-1. (b) UV-vis absorption diffuse reflectance spectra. (c) Energy band diagrams. (d) Photocatalytic H2O2 production performance over AOF-1 and TPB. DFT calculations. (e) The structure of Mode. (f) The main molecular orbitals of TPB molecules and stacked TPB dimer. Reprinted with permission from Ref. [128]. Copyright 2024, John Wiley and Sons.
Functional group | Photocatalyst | Light source | Concentration of photocatalyst | Reaction pathway | Rate of H2O2 formation/ μmol g-1 h-1 | AQY% c | SCC% | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxygen- containing moieties | RF Resins | solar simulator, 420-700 nm | 250 mg/50 mL | ORR | 200a | 7.6 | ~0.5 | [ | |||||||
RF/P3HT | AM1.5G simulated sunlight | 150 mg/50 mL | ORR | 615a | 10.5 | ~1.0 | [ | ||||||||
RF-DHAQ-2 | Xe lamp (λ > 420 nm) | 10 mg/50 mL | two-step 1e- ORR & one-step 2e- WOR | 1820 | 11.6 | 1.2 | [ | ||||||||
AQTEE-COP | Xe lamp (λ > 400 nm) | 30 mg/50 mL | two-step 1e- ORR | 3204 | 3.59 (400 nm) | — | [ | ||||||||
TpAQ-COF-12 | Xe lamp (λ > 420 nm) | 10 mg/30 mL | one-step 2e- ORR | 420 | 7.4 | — | [ | ||||||||
TPE-AQ | simulated sunlight (λ > 400 nm) | 10 mg/20 mL | one-step 2e- ORR | 909 | — | 0.26 | [ | ||||||||
SA-TCPP | Xe lamp (λ > 420 nm) | 75 mg/50 mL | hole oxidation of carboxylic groups | 1150b | 14.9 | 1.2 | [ | ||||||||
SO3H-COF | Xe lamp (λ > 400 nm) | 5 mg/50 mL | two-step 1e- ORR | 3015 | 8.7 (400 nm) | 0.4 | [ | ||||||||
PBNCZ | Xe lamp (λ ≥ 420 nm) | 15 mg/25 mL | two-step 1e- ORR | 1719 | 0.27 | — | [ | ||||||||
DMCR-1NH | Xe lamp (λ > 420 nm) | 5 mg/11 mL | two-step 1e- ORR | 2588 | 10.2 | — | [ | ||||||||
Nitrogen- containing moieties | TBTN-COF | Xe lamp (λ > 420 nm) | 2.5 mg/20 mL | one-step 2e- ORR | 11013 | 7.59 | — | [ | |||||||
COF-2CN | Xe lamp (λ > 420 nm) | 1 mg/50mL | two-step 1e- ORR & one-step 2e− WOR | 4858 | 6.8 (459 nm) | 0.6 | [ | ||||||||
NMT400 | AM1.5G simulated sunlight | 20 mg/50 mL | two-step 1e- ORR & one-step 2e- ORR & one-step 2e− WOR | 270.9 | 2.6 | — | [ | ||||||||
HEP-TAPT-COF | Xe lamp (λ > 420 nm) | 50 mg/100 mL | one-step 2e- ORR | 1750 | 15.35 | 0.65 | [ | ||||||||
CHF-DPDA | Xe lamp (λ > 420 nm) | 40 mg/20 mL | one-step 2e- ORR & one-step 2e− WOR | 1725 | 16 | 0.78 | [ | ||||||||
TpDz-COF | Xe lamp (λ > 420 nm) | 3 mg/18 mL | one-step 2e- ORR | 7327 | 11.9 | 0.62 | [ | ||||||||
o-COF-TpPzda | Xe lamp (λ > 420 nm) | 5 mg/40 mL | two-step 1e- ORR | 4396 | — | 0.46 | [ | ||||||||
p-COF-TpPzda | Xe lamp (λ > 420 nm) | 5 mg/40 mL | two-step 1e- ORR | 6434 | — | 1.24 | [ | ||||||||
CDA300 | Xe lamp (λ > 420 nm) | 10 mg/40 mL | one-step 2e- ORR & one-step 2e− WOR | 557.2 | 2.45 | 0.11 | [ | ||||||||
COF-TfpBpy | light intensity at 420-700 nm | 15 mg/10 mL | One-step 2e− ORR & One-step 2e− WOR | 694.7 | 8.1 | 1.08a | [ | ||||||||
TBD-COF | white LED (400-700 nm) | 1 mg/8 mL | two-step 1e- ORR & •O2- to 1O2 to H2O2 & one-step 2e- WOR | 6085 | 5.67 | 1.04 | [ | ||||||||
PyIm-COF | Xe lamp (λ > 420 nm) | 10 mg/50 mL | one-step 2e- ORR | 5850 | 3.7 | 0.28 | [ | ||||||||
DETH-COF | Xe lamp (λ > 420 nm) | 10 mg/50 mL | two-step 1e- ORR & WOR | 1665 | — | — | [ | ||||||||
Sulphur-containing moieties | FS-COFs | Xe lamp (λ > 420 nm) | 5 mg/20 mL | one-step 2e− ORR | 3904 | 6.21 | — | [ | |||||||
FS-OHOMe-COF | Xe lamp (λ > 420 nm) | 50 mg/50 mL | two-step 1e− ORR | 1100 | 9.6 | 0.58 | [ | ||||||||
TD-COF | white LED (400-700 nm) | 1 mg/4 mL | two-step 1e− ORR & one-step 2e− WOR | 4620 | — | 0.15 | [ | ||||||||
TaptBtt | Xe lamp (λ > 420 nm) | 15 mg/10 mL | two-step 1e− ORR & one-step 2e− WOR | 1407 | 4.6 (450 nm) | 0.30 | [ | ||||||||
PAF-363 | Xe lamp (λ > 420 nm) | 50 mg/50 mL | one-step 2e- ORR | 3930 | 5.32 | — | [ | ||||||||
Bpt-CTF | Xe lamp (350-780 nm) | 10 mg/50 mL | one-step 2e- ORR | 3268.1 | 8.6 (400 nm) | — | [ | ||||||||
TTP | Xe lamp (λ > 420 nm) | 4 mg/20 mL | two-step 1e- ORR | 5920 | 7.61 | 0.35 | [ | ||||||||
TDB-COF | AM1.5G simulated sunlight | 10 mg/10 mL | two-step 1e- ORR & two-step 1e- WOR | 723.5 | 1.0 (400 nm) | 0.39 | [ | ||||||||
Azole groups | P-TAME | 420 nm LED | 20 mg/20mL | ORR | 1900 | — | — | [ | |||||||
TZ-COF | Xe lamp (λ > 420 nm) | 45 mg/30 mL | two-step 1e- ORR | 268 | 0.6 (475 nm) | — | [ | ||||||||
BBTz | Xe lamp (λ > 365 nm) | 5 mg/25 mL | two-step 1e- ORR& •O2- to 1O2 to H2O2 | 7274 | 7.14 (475 nm) | — | [ | ||||||||
TTF-BT-COF | Xe lamp (λ > 420 nm) | 5 mg/10 mL | one-step 2e- ORR & one-step 2e- WOR | 2760 | 11.19 | 0.49 | [ | ||||||||
Alkyne groups | CTF-BDDBN | Xe lamp (λ > 420 nm) | 30 mg/50 mL | one-step 2e- ORR & one-step 2e- WOR | 97 | — | 0.14 | [ | |||||||
TPT-alkynyl-AQ | Xe lamp (λ > 400 nm) | 50 mg/50 mL | one-step 2e- ORR & one-step 2e- WOR | 3214 | 18 (425 nm) | 0.35 | [ | ||||||||
Methylene groups | AOF-1 | Xe lamp (λ > 420 nm) | 5 mg/10mL | two-step 1e- ORR | 2407 | — | — | [ |
Table 1 Summary of the reported photocatalytic H2O2 production by organic framework photocatalysts.
Functional group | Photocatalyst | Light source | Concentration of photocatalyst | Reaction pathway | Rate of H2O2 formation/ μmol g-1 h-1 | AQY% c | SCC% | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxygen- containing moieties | RF Resins | solar simulator, 420-700 nm | 250 mg/50 mL | ORR | 200a | 7.6 | ~0.5 | [ | |||||||
RF/P3HT | AM1.5G simulated sunlight | 150 mg/50 mL | ORR | 615a | 10.5 | ~1.0 | [ | ||||||||
RF-DHAQ-2 | Xe lamp (λ > 420 nm) | 10 mg/50 mL | two-step 1e- ORR & one-step 2e- WOR | 1820 | 11.6 | 1.2 | [ | ||||||||
AQTEE-COP | Xe lamp (λ > 400 nm) | 30 mg/50 mL | two-step 1e- ORR | 3204 | 3.59 (400 nm) | — | [ | ||||||||
TpAQ-COF-12 | Xe lamp (λ > 420 nm) | 10 mg/30 mL | one-step 2e- ORR | 420 | 7.4 | — | [ | ||||||||
TPE-AQ | simulated sunlight (λ > 400 nm) | 10 mg/20 mL | one-step 2e- ORR | 909 | — | 0.26 | [ | ||||||||
SA-TCPP | Xe lamp (λ > 420 nm) | 75 mg/50 mL | hole oxidation of carboxylic groups | 1150b | 14.9 | 1.2 | [ | ||||||||
SO3H-COF | Xe lamp (λ > 400 nm) | 5 mg/50 mL | two-step 1e- ORR | 3015 | 8.7 (400 nm) | 0.4 | [ | ||||||||
PBNCZ | Xe lamp (λ ≥ 420 nm) | 15 mg/25 mL | two-step 1e- ORR | 1719 | 0.27 | — | [ | ||||||||
DMCR-1NH | Xe lamp (λ > 420 nm) | 5 mg/11 mL | two-step 1e- ORR | 2588 | 10.2 | — | [ | ||||||||
Nitrogen- containing moieties | TBTN-COF | Xe lamp (λ > 420 nm) | 2.5 mg/20 mL | one-step 2e- ORR | 11013 | 7.59 | — | [ | |||||||
COF-2CN | Xe lamp (λ > 420 nm) | 1 mg/50mL | two-step 1e- ORR & one-step 2e− WOR | 4858 | 6.8 (459 nm) | 0.6 | [ | ||||||||
NMT400 | AM1.5G simulated sunlight | 20 mg/50 mL | two-step 1e- ORR & one-step 2e- ORR & one-step 2e− WOR | 270.9 | 2.6 | — | [ | ||||||||
HEP-TAPT-COF | Xe lamp (λ > 420 nm) | 50 mg/100 mL | one-step 2e- ORR | 1750 | 15.35 | 0.65 | [ | ||||||||
CHF-DPDA | Xe lamp (λ > 420 nm) | 40 mg/20 mL | one-step 2e- ORR & one-step 2e− WOR | 1725 | 16 | 0.78 | [ | ||||||||
TpDz-COF | Xe lamp (λ > 420 nm) | 3 mg/18 mL | one-step 2e- ORR | 7327 | 11.9 | 0.62 | [ | ||||||||
o-COF-TpPzda | Xe lamp (λ > 420 nm) | 5 mg/40 mL | two-step 1e- ORR | 4396 | — | 0.46 | [ | ||||||||
p-COF-TpPzda | Xe lamp (λ > 420 nm) | 5 mg/40 mL | two-step 1e- ORR | 6434 | — | 1.24 | [ | ||||||||
CDA300 | Xe lamp (λ > 420 nm) | 10 mg/40 mL | one-step 2e- ORR & one-step 2e− WOR | 557.2 | 2.45 | 0.11 | [ | ||||||||
COF-TfpBpy | light intensity at 420-700 nm | 15 mg/10 mL | One-step 2e− ORR & One-step 2e− WOR | 694.7 | 8.1 | 1.08a | [ | ||||||||
TBD-COF | white LED (400-700 nm) | 1 mg/8 mL | two-step 1e- ORR & •O2- to 1O2 to H2O2 & one-step 2e- WOR | 6085 | 5.67 | 1.04 | [ | ||||||||
PyIm-COF | Xe lamp (λ > 420 nm) | 10 mg/50 mL | one-step 2e- ORR | 5850 | 3.7 | 0.28 | [ | ||||||||
DETH-COF | Xe lamp (λ > 420 nm) | 10 mg/50 mL | two-step 1e- ORR & WOR | 1665 | — | — | [ | ||||||||
Sulphur-containing moieties | FS-COFs | Xe lamp (λ > 420 nm) | 5 mg/20 mL | one-step 2e− ORR | 3904 | 6.21 | — | [ | |||||||
FS-OHOMe-COF | Xe lamp (λ > 420 nm) | 50 mg/50 mL | two-step 1e− ORR | 1100 | 9.6 | 0.58 | [ | ||||||||
TD-COF | white LED (400-700 nm) | 1 mg/4 mL | two-step 1e− ORR & one-step 2e− WOR | 4620 | — | 0.15 | [ | ||||||||
TaptBtt | Xe lamp (λ > 420 nm) | 15 mg/10 mL | two-step 1e− ORR & one-step 2e− WOR | 1407 | 4.6 (450 nm) | 0.30 | [ | ||||||||
PAF-363 | Xe lamp (λ > 420 nm) | 50 mg/50 mL | one-step 2e- ORR | 3930 | 5.32 | — | [ | ||||||||
Bpt-CTF | Xe lamp (350-780 nm) | 10 mg/50 mL | one-step 2e- ORR | 3268.1 | 8.6 (400 nm) | — | [ | ||||||||
TTP | Xe lamp (λ > 420 nm) | 4 mg/20 mL | two-step 1e- ORR | 5920 | 7.61 | 0.35 | [ | ||||||||
TDB-COF | AM1.5G simulated sunlight | 10 mg/10 mL | two-step 1e- ORR & two-step 1e- WOR | 723.5 | 1.0 (400 nm) | 0.39 | [ | ||||||||
Azole groups | P-TAME | 420 nm LED | 20 mg/20mL | ORR | 1900 | — | — | [ | |||||||
TZ-COF | Xe lamp (λ > 420 nm) | 45 mg/30 mL | two-step 1e- ORR | 268 | 0.6 (475 nm) | — | [ | ||||||||
BBTz | Xe lamp (λ > 365 nm) | 5 mg/25 mL | two-step 1e- ORR& •O2- to 1O2 to H2O2 | 7274 | 7.14 (475 nm) | — | [ | ||||||||
TTF-BT-COF | Xe lamp (λ > 420 nm) | 5 mg/10 mL | one-step 2e- ORR & one-step 2e- WOR | 2760 | 11.19 | 0.49 | [ | ||||||||
Alkyne groups | CTF-BDDBN | Xe lamp (λ > 420 nm) | 30 mg/50 mL | one-step 2e- ORR & one-step 2e- WOR | 97 | — | 0.14 | [ | |||||||
TPT-alkynyl-AQ | Xe lamp (λ > 400 nm) | 50 mg/50 mL | one-step 2e- ORR & one-step 2e- WOR | 3214 | 18 (425 nm) | 0.35 | [ | ||||||||
Methylene groups | AOF-1 | Xe lamp (λ > 420 nm) | 5 mg/10mL | two-step 1e- ORR | 2407 | — | — | [ |
|
[1] | 林铮, 谢婉婷, 朱梦静, 汪长春, 郭佳. 二氧化硅支撑的平行堆叠排列手性共价有机框架促进光催化析氢[J]. 催化学报, 2024, 64(9): 87-97. |
[2] | 赵艳艳, 杨春燕, 张淑敏, 孙国太, 朱必成, 王临曦, 张建军. 飞秒瞬态吸收光谱研究ZnSe QDs/COF S型异质结光催化产H2O2中载流子传输机理[J]. 催化学报, 2024, 63(8): 258-269. |
[3] | 厉超, 王朔, 刘媛, 黄细河, 庄严, 吴舒鸿, 汪颖, 温娜, 吴凯丰, 丁正新, 龙金林. 共价有机框架双电场叠加实现高效光催化产氢[J]. 催化学报, 2024, 63(8): 164-175. |
[4] | 任卫杰, 李宁, 常青, 武杰, 杨金龙, 胡胜亮, 康振辉. 通过碳点从共价三嗪框架中提取光生空穴用于光合作用产过氧化氢[J]. 催化学报, 2024, 62(7): 178-189. |
[5] | 刘高雄, 陈润东, 夏兵全, 吴珍, 刘善堂, 冉景润. 共价有机框架基光催化剂合成过氧化氢和高价值化学品的最新进展[J]. 催化学报, 2024, 61(6): 97-110. |
[6] | 侯现飚, 于辰, 倪腾嘉, 张树聪, 周健, 代水星, 初蕾, 黄明华. 构筑非晶/晶体NiFe-MOF@NiS异质结构催化剂增强大电流密度下水/海水氧化[J]. 催化学报, 2024, 61(6): 192-204. |
[7] | 黄浩铭, 林清清, 牛青, 宁江淇, 李留义, 毕进红, 于岩. 基于共价有机框架非金属位点的光催化CO2还原[J]. 催化学报, 2024, 60(5): 201-208. |
[8] | 丁婕婷, 王浩帆, 沈葵, 韦小明, 陈立宇, 李映伟. 具有丰富活性位点和高电子传导性的非晶MOF用于高效肼氧化[J]. 催化学报, 2024, 60(5): 351-359. |
[9] | 宋宁, 江吉周, 洪士欢, 王赟, 李春梅, 董红军. 以金属有机骨架为源制备单原子电催化剂用于能量转换的最新进展[J]. 催化学报, 2024, 59(4): 38-81. |
[10] | 白浚贤, 沈荣晨, 梁桂杰, 秦朝朝, 许第发, 胡浩斌, 李鑫. 噻吩基二维共价有机框架中的拓扑结构诱导局部电荷极化促进光催化制氢[J]. 催化学报, 2024, 59(4): 225-236. |
[11] | 杨婷婷, 王彬, 朱剑豪, 夏杰祥, 李华明. 自牺牲型金属有机框架衍生In2S3多级孔结构纳米材料强化光催化性能[J]. 催化学报, 2024, 59(4): 204-213. |
[12] | 王乐乐, 程文瑶, 王嘉鑫, 杨娟, 刘芹芹. 构筑共轭聚合物基S型异质结分子内和界面电场以实现高效光催化制氢[J]. 催化学报, 2024, 58(3): 194-205. |
[13] | 曾冰, 黄凤伟, 王月欣, 熊康慧, 郎贤军. TEMPO显著加速芘基金属有机框架光催化硫化物到亚砜的转化[J]. 催化学报, 2024, 58(3): 226-236. |
[14] | 张勇, 邱俊逸, 朱必成, 孙国太, 程蓓, 王临曦. 空心球状共价有机框架负载金纳米粒子用于光催化生产过氧化氢[J]. 催化学报, 2024, 57(2): 143-153. |
[15] | 金昱丞, 刘小琳, 曲琛, 李长骏, 王海龙, 詹晓宁, 曹昕怡, 李晓锋, 于宝秋, 张琪, 齐冬冬, 姜建壮. 苝二酰亚胺共价有机框架超级还原剂用于高效光催化芳基卤化物还原反应[J]. 催化学报, 2024, 57(2): 171-183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||