催化学报 ›› 2025, Vol. 69: 282-291.DOI: 10.1016/S1872-2067(24)60176-2

• 论文 • 上一篇    下一篇

阴阳离子调节策略激活晶格氧促进析氧性能

陈明星a, 杜子翯a, 刘念a, 李慧杰a,b, 齐静a,*(), 上官恩波a,b,*(), 李晶a,b, 曹嘉豪c,*(), 杨树姣d, 张伟d, 曹睿d,*()   

  1. a河南师范大学材料科学与工程学院, 河南省先进电化学储能材料设计与循环利用工程技术研究中心, 河南新乡 453007
    b河南师范大学化学与化工学院, 精细化学品绿色制造河南省协同创新中心, 绿色化学介质与反应教育部重点实验室, 河南新乡 453007
    c华为数字能源技术有限公司, 广东深圳 518028
    d陕西师范大学化学化工学院, 应用表面与胶体化学教育部重点实验室, 陕西西安 710119
  • 收稿日期:2024-10-10 接受日期:2024-10-28 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: qijing2020@htu.edu.cn (齐静), shangguanebo@htu.edu.cn (上官恩波), jhcao95@163.com (曹嘉豪), ruicao@snnu.edu.cn (曹睿).
  • 基金资助:
    国家自然科学基金(22209040);国家自然科学基金(22202063)

Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution

Mingxing Chena, Zihe Dua, Nian Liua, Huijie Lia,b, Jing Qia,*(), Enbo Shangguana,b,*(), Jing Lia,b, Jiahao Caoc,*(), Shujiao Yangd, Wei Zhangd, Rui Caod,*()   

  1. aHenan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, Henan, China
    bCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
    cHuawei Digital Power Technologies Co., Ltd., Shenzhen 518028, Guangdong, China
    dKey Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
  • Received:2024-10-10 Accepted:2024-10-28 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: qijing2020@htu.edu.cn (J. Qi), shangguanebo@htu.edu.cn (E. Shangguan), jhcao95@163.com (J. Cao), ruicao@snnu.edu.cn (R. Cao).
  • Supported by:
    National Natural Science Foundation of China(22209040);National Natural Science Foundation of China(22202063)

摘要:

析氧反应(OER)在可再生能源的存储与转换领域占有关键地位, 然而因其动力学较为缓慢, 需要研究者制备出高效廉价的过渡金属基催化剂以提高能源利用效率.  OER可分为吸附质演化机理(AEM)和晶格氧机理(LOM), 其中LOM可打破AEM中的热力学限制而展现出较高的OER活性.  但由于过渡金属和氧之间的电负性差值较大, 大多数过渡金属基催化剂遵循AEM而非LOM机理.  基于此, 本文设计阴阳离子调控的策略可有效激活晶格氧, 助力过渡金属基催化剂实现由AEM向LOM的转变.

本文报道了钴、硫和磷等阴阳离子共掺杂的氢氧化镍(NiCoPSOH)作为高效的析氧催化剂.  例如, NiCoPSOH仅需232 mV的过电势即可达到20 mA cm‒2的电流密度, 远低于未掺杂氢氧化镍(Ni(OH)2)的282 mV.  采用X射线光电子能谱、红外和拉曼(Raman)光谱证实NiCoPSOH材料中不对称氧桥联金属位点(Ni-O-Co)的存在及其对Ni电子中心的调控作用.  结合莫特-肖特基曲线和原位Raman光谱等结果证明, 磷和硫可大幅增加载流子浓度, 提高导电性并促进表面重构.  进一步通过pH依赖性测试、分子探针实验、Raman光谱和微分电化学质谱(DEMS)等技术研究了反应机理: 首先, pH依赖性测试表明NiCoPSOH的质子反应级数远大于Ni(OH)2, 推测NiCoPSOH可能通过LOM的机理催化析氧反应.  然后, 将碱性溶液由1 mol L‒1 KOH更换为1 mol L‒1 四甲基氢氧化铵(TMAOH)溶液, NiCoPSOH的电流密度迅速降低, 而Ni(OH)2几乎不受影响;  NiCoPSOH的Raman光谱能够检测到TMA+, 而Ni(OH)2没有, 说明在催化过程中LOM的中间体-过氧类似物(O22‒)在NiCoPSOH催化剂表面生成, 与原位Raman光谱结果相符.  DEMS的研究结果表明, NiCoPSOH的晶格氧参与到OER的催化过程中, 经18O对催化剂进行标记后, 在NiCoPSOH能够测量出34O2的DEMS信号.  以上实验结果均证明经阴阳离子调控后, NiCoPSOH的析氧反应途径由常规的AEM转变为LOM.  理论计算进一步证实了反应机理, 与Ni(OH)2相比, NiCoPSOH的氧2p轨道中心上移, 晶体轨道哈密顿布居数值增大, 并且其LOM的速控步能垒最小, 说明NiCoPSOH是通过LOM催化析氧反应的进行.  因此, 阴阳离子调控的催化剂NiCoPSOH可有效加快OER的动力学.

综上, 本文介绍了阴阳离子调节的作用, 为调控析氧反应机理由AEM转为LOM提供了一个新的视角, 并对高效过渡金属基催化剂的合理设计具有一定的借鉴意义.  

关键词: 析氧反应, 电催化, 晶格氧机理, 高价态金属物种, 阴阳离子调控

Abstract:

Oxygen evolution reaction (OER) is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion. To further accelerate the sluggish kinetics of OER, a cation and anion modulation strategy is reported here, which has been proven to be effective in preparing highly active electrocatalyst. For example, the cobalt, sulfur, and phosphorus modulated nickel hydroxide (denoted as NiCoPSOH) only needs an overpotential of 232 mV to reach a current density of 20 mA cm−2, demonstrating excellent OER performances. The cation and anion modulation facilitates the generation of high-valent Ni species, which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism (LOM), as evidenced by the results of electrochemical measurements, Raman spectroscopy and differential electrochemical mass spectrometry. The LOM pathway of NiCoPSOH is further verified by the theoretical calculations, including the upshift of O 2p band center, the weakened Ni-O bond and the lowest energy barrier of rate-limiting step. Thus, the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics. Our work provides a new insight into the cation and anion modulation, and broadens the possibility for the rational design of highly active electrocatalysts.

Key words: Oxygen evolution reaction, Electrocatalysis, Lattice oxygen mechanism, High-valent metal species, Cation and anion modulation