催化学报 ›› 2025, Vol. 69: 241-248.DOI: 10.1016/S1872-2067(24)60189-0

• 论文 • 上一篇    下一篇

钯铂双金属烯用于低能耗5-羟甲基糠醛电化学氢化

刘锡来, 仲伟, 靳雨帆, 王天娇, 肖雪(), 陈沛, 陈煜(), 艾轩()   

  1. 陕西师范大学材料科学与工程学院, 陕西省大分子科学重点实验室, 陕西省能源新材料与器件重点实验室, 陕西省能源新技术工程实验室, 陕西西安 710062
  • 收稿日期:2024-09-23 接受日期:2024-11-05 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: tiffanyxx110@gmail.com (肖雪), ndchenyu@gmail.com (陈煜), aixuanchem@outlook.com (艾轩).
  • 基金资助:
    国家自然科学基金(22272103);国家自然科学基金(22309108);中国博士后科学基金(2023TQ0204);陕西省科技创新团队(2023-CX-TD-27);陕西师范大学优秀研究生培养计划(LHRCCX23211);陕西省大学生创新训练计划项目(S202410718179);陕西省三秦学者创新团队

Pd-Pt bimetallene for the energy-saving electrochemical hydrogenation of 5-hydroxymethylfurfural

Xi-Lai Liu, Wei Zhong, Yu-Fan Jin, Tian-Jiao Wang, Xue Xiao(), Pei Chen, Yu Chen(), Xuan Ai()   

  1. Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi, China
  • Received:2024-09-23 Accepted:2024-11-05 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: tiffanyxx110@gmail.com (X. Xiao), ndchenyu@gmail.com (Y. Chen), aixuanchem@outlook.com (X. Ai).
  • Supported by:
    National Natural Science Foundation of China(22272103);National Natural Science Foundation of China(22309108);China Postdoctoral Science Foundation(2023TQ0204);Science and Technology Innovation Team of Shaanxi Province(2023-CX-TD-27);Excellent Graduate Training Program of Shaanxi Normal University(LHRCCX23211);National Training Program of Innovation and Entrepreneurship for Undergraduates(S202410718179);and Sanqin Scholar Innovation Teams in Shaanxi Province, China

摘要:

5-羟甲基糠醛(HMF)是木质素中一种重要的C6衍生物.  2,5-二羟甲基呋喃(DHMF)作为传统的HMF加氢产物, 是合成药物中间体、核苷衍生物、冠醚和呋喃的重要产物.  目前, 工业上常在120‒300 °C高温和0.68‒6.2 MPa高压下进行HMF加氢生产DHMF.  该工艺存在能源需求高、维护困难、转化率低和生产安全性有限等缺点.  电化学氢化(ECH)将HMF转化为DHMF是一种节能的化学品增值反应.  由于HMF的电化学还原电位较高, 且中间产物复杂, 将HMF选择性转化为DHMF极具挑战性.  同时, 与ECH耦合的阳极析氧反应(OER)动力学缓慢, 导致整体能耗较高.  使用甲酸氧化反应(FAOR)替代OER可大幅降低反应电位.  因此, 开发同时具有高选择性HMF氢化活性和高甲酸氧化活性的电催化剂具有重大意义.  

本文合成了可用于HMF ECH与FAOR的双功能钯铂双金属烯(Pd3Pt1 BML).  在50 mmol L‒1 HMF和‒0.3 V电位下, Pd3Pt1 BML比钯金属烯(Pd ML)和钯铂双金属纳米粒子(Pd3Pt1 sNCs)具有更强的还原电流响应.  对于Pd3Pt1 BML催化剂, Pt的引入和独特的二维形貌协同加快了HMF到DHMF的反应速率, 提升了法拉第效率(> 93%), 催化性能显著高于Pd ML和Pd3Pt1 sNCs.  采用原位拉曼测试比较不同电位下νC=C在1567 cm‒1处的吸附峰和νC=O在1670 cm‒1处的吸附峰的变化, Pd3Pt1 BML随着电位升高, 对HMF的吸附逐渐增强, 而Pd ML对HMF吸附强度无明显变化, 这说明与纯Pd相比, Pt的引入减弱了Pd对HMF的吸附.  采用顺磁共振法(EPR)探究了Pd3Pt1 BML上HMF ECH过程中的氢源, EPR实验观察到的9个强度比为1:1:2:1:1:1:2:1:1的特征峰证实了HMF ECH中存在吸附氢Hads, 这说明Pt位点上富集的吸附氢有利于为P位点上吸附的HMF羰基供氢.  另一方面, Hads的猝灭实验结果表明, 当HMF ECH反应进行100 s时向电解质中加入捕获剂叔丁醇时, HMF加氢的电流在接下来的200 s中逐渐减小, 进一步证明Hads直接参与了HMF ECH.  原位拉曼光谱、电子顺磁共振谱和理论计算结果表明, Pd3Pt1 BML较好的HMF ECH性能来源于其高度合金化的结构, 削弱了HMF在Pd上的强吸附, 并提供了丰富的界面Hads来加速HMF ECH.  Pt的引入不仅削弱了HMF对Pd的强吸附(类似中毒), 而且提供了对HMF ECH至关重要的Hads.  CO溶出测试结果表明, CO在Pd3Pt1 BML上的起始氧化电位为0.87 V, 明显低于Pd ML的0.92 V, 说明Pd3Pt1 BML较Pd ML具有更好的CO抗毒化能力.  FAOR实验结果表明, Pd3Pt1 BML在0.50 V下获得了2796.34 A g‒1的电化学活性, 为Pd ML的5.92倍.  将双功能Pd3Pt1 BML配置到FAOR辅助的HMF ECH电解槽中, 实验表明, HMF ECH (Pd3Pt1 BML)||FAOR (Pd3Pt1 BML)系统在0.72 V电解电压下即可实现HMF向DHMF的高效转化.  

综上所述, 本文成功制备了具有高ECSA和高电化学活性的双功能催化剂Pd3Pt1 BML, 并表现出了良好的活性、选择性和稳定性, 这为设计高选择性双功能电化学氢化催化剂和低能耗高附加值化学品生产提供了新的研究思路.

关键词: 5-羟甲基糠醛, 选择性氢化, 甲酸氧化, 电催化, 双功能

Abstract:

The electrochemical hydrogenation (ECH) of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) represents a pivotal pathway for the electrocatalytic upgrading of biomass-based organic small molecules, offering significant reductions in energy consumption while producing value-added chemicals. The conversion of HMF to DHMF is challenging due to the high reduction potential and complex intermediates of HMF ECH under neutral environment. Also, the total efficiency is hindered by sluggish anodic oxygen evolution reaction (OER) kinetics. Herein, we report a synthesis of highly alloyed Pd-Pt bimetallene (Pd3Pt1 BML) for HMF ECH coupled with formic acid oxidation reaction (FAOR). Through a combination of in-situ Raman spectroscopy, electron paramagnetic resonance analysis, and theoretical calculations, we elucidate that the HMF adsorption on Pd atoms, strategically separated by Pt atoms, is weakened compared to pure Pd surfaces. Additionally, Pt atoms serve as crucial providers of active hydrogen to neighboring Pd atoms, synergistically enhancing the reaction kinetics of HMF conversion with a Faradaic efficiency >93%. Meanwhile, the atomically dispersed Pt atoms endow Pd3Pt1 BML with high electrochemical performance for the direct pathway of FAOR at the anode. As a result, a FAOR-assisted HMF ECH system equipped with bifunctional Pd3Pt1 BML achieves the energy-efficient conversion of HMF to DHMF at electrolysis voltage of 0.72 V at 10 mA cm−2. This work provides insights into the rational design of bifunctional catalysts featuring two distinct types of active sites for advanced energy electrocatalysis and ECH.

Key words: 5-Hydroxymethylfurfural, Selective hydrogenation, Formic acid oxidation, Electrocatalyst, Bifunction