催化学报 ›› 2025, Vol. 68: 83-102.DOI: 10.1016/S1872-2067(24)60185-3
收稿日期:
2024-08-30
接受日期:
2024-10-09
出版日期:
2025-01-18
发布日期:
2025-01-02
通讯作者:
* 电子邮箱: z-jq20@mails.tsinghua.edu.cn (张嘉奇);
cchen@mail.tsinghua.edu.cn (陈晨).基金资助:
Jinxin Wang, Jiaqi Zhang*(), Chen Chen*(
)
Received:
2024-08-30
Accepted:
2024-10-09
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: About author:
Jiaqi Zhang (Department of Chemistry, Tsinghua University) received his B.S. degree from China University of Petroleum (East China) in 2020 and is currently pursuing his Ph.D. at Tsinghua University. His research focuses on nanomaterials for electrocatalysis and electrochemical synthesis.Supported by:
摘要:
现代社会对天然化石燃料的持续大量消耗导致过量的CO2排放, 进而引发了气候变化、环境恶化和能源危机. 在此背景下, 电化学CO2还原(CO2RR)能将间歇性的电能转化为化学燃料和其他增值产品,不仅为清洁能源的利用开辟了新的道路, 也有希望实现碳循环. 目前, 除了少数特殊情况外, 铜基催化剂是能够实现高效产生多碳产物的首选催化剂. 在CO2还原领域, 对铜基材料已进行了数十年的研究, 但仍然存在诸多争议点. 例如, 测试过程中存在重复性较差, 铜基材料的表面敏感性高, 电解质添加剂和碱金属的阳离子效应复杂以及微环境调控难度大等问题. 这是因为在电催化条件下, 催化剂表面存在持续的动态变化, 这也为建立铜基催化剂的构效关系带来了困难. 铜基材料的重构虽然可能导致催化剂失活和选择性降低, 但同时也可能产生新的催化活性位点, 并形成动态表面/界面. 这表明重构不仅仅是一种失活模式, 也可能是铜基材料独特催化活性的内在原因. 随着表征技术和理论研究的不断深入, 可以通过多种证据交叉验证, 构建出完整且动态的构效关系, 从而从动态表面的视角重新诠释CO2RR过程中铜基材料的诸多特性与未解之谜.
本文首先简单介绍了各类多碳产物的生成机理与C-C偶联理论. 以静态表面模型的视角概括了促进多碳产物生成的催化剂结构因素, 并讨论了具有不同晶面、化学态和配位数的铜催化剂的产物选择性: 特定的晶面的暴露、一价铜的保留和低配位铜的丰富度等因素能促进多碳产物的形成. 随后, 基于先进原位表征技术的发展与应用, 讨论了各种重构现象和结构因素(晶面、化学态、配位环境)的动态变化. 这意味着以往静态表面模型的视角可能带来误解, 无法建立准确的构效关系. 因此需要更深入地探究动态表面. 随着原位表征技术的不断深入发展, 研究者可以从原子级的机制探索催化活性与表面的动态构效关系, 透过最新的谱学和原位电镜结果, 铜基材料重构的原子级机制得以被深入研究. Cu+与CO等表面吸附物种在该过程中发挥了关键作用, 进而导致了微观层面的流动非晶相界面与宏观尺度的破碎、聚结、粗糙化等重构现象. 随后, 讨论了如何从动态表面的视角理解电解质和电解模式的影响 最后, 展望了多维原位表征的发展和存在的潜在问题, 并讨论了基于神经网络、大语言模型和蒙特卡洛算法在研究重构过程中的可能应用, 并探讨了基于人工智能的机器化学家被应用于探究CO2电还原的可能性.
综上所述, 本文深入系统地总结了铜基催化剂在CO2电催化中的动态重构行为, 阐述了该重构的原子级机制, 以动态表面的视角讨论了电解质和电解模式的影响. 最后, 对该领域未来的研究方向进行了展望, 以期推动对铜催化剂动态表面的更深入研究, 进而推动CO2电还原的快速发展.
王金鑫, 张嘉奇, 陈晨. 电催化二氧化碳还原转化到多碳产物: 铜基催化剂动态表面的视角[J]. 催化学报, 2025, 68: 83-102.
Jinxin Wang, Jiaqi Zhang, Chen Chen. Electrochemical CO2RR to C2+ products: A vision of dynamic surfaces of Cu-based catalysts[J]. Chinese Journal of Catalysis, 2025, 68: 83-102.
Fig. 1. Overview of catalyst surface reconstruction, its regulation strategies for CO2 reduction reactions, and the evolution mechanisms for CO2RR-to-C2+ products discussed in this review.
Fig. 2. Schematic representation of the possible routes of CO2RR to various value-added products. CO2 is the initial reactant and CO is the key intermediate, with C2 and C3 products formed through coupling between intermediates. Arrows indicate proton and electron transfer to oxygen or carbon sites.
Fig. 3. (a) Catalytic properties of the Cu nanocatalysts with different facets in CO2RR. Reprinted with permission from Ref. [43]. Copyright 2020, American Chemical Society. (b) The activation energy barrier of CO dimerization on different facets. Reprinted with permission from Ref. [42]. Copyright 2016, American Chemical Society. (c) The highest C2+/C1 ratio of polished Cu, 10-cycled Cu and 100-cycled Cu. Reprinted with permission from Ref. [45]. Copyright 2018, Springer Nature. (d) Schematic depiction of the influence of the coverage of *CO. Reprinted with permission from Ref. [41]. Copyright 2017, American Chemical Society. (e) Formation of C2H4 on the (100) facets of c-Cu2O NPs, (111) facets of o-Cu2O NPs, and (100) and (111) facets of t-Cu2O NPs. Reprinted with permission from Ref. [54]. Copyright 2020, John Wiley and Sons.
Fig. 4. (a) CNs of adparticles with different sizes on various crystalline facets. Reprinted with permission from Ref. [58]. Copyright 2018, Springer Nature. (b) Better selectivity of n-propanol obtained on the catalyst with adparticles [46]. Copyright 2024, American Chemical Society. (c,d) Size dependence of catalytic performance of Cu nanocubes [60]. Copyright 2016, John Wiley and Sons. (e) Schematic diagram of manipulating CN via pulsed electrolysis. (f) CNs obtained from EXAFS. Reprinted with permission from Ref. [59]. Copyright 2024, American Chemical Society.
Fig. 5. (a) The synergistic effect of Cu(0) and Cu(I) sites. Reprinted with permission from Ref. [66]. Copyright 2020, American Chemical Society. (b) Selectivity of catalysts with and without molecular doping. Reprinted with permission from Ref. [71]. Copyright 2021, Springer Nature. (c) Long-time catalytic performance with changing ratio of Cu(I). Reprinted with permission from Ref. [69]. Copyright 2015, John Wiley and Sons. (d) The ability to preserve Cu(I) of Cu-on-Cu3N catalyst characterized via in situ XAS. Reprinted with permission from Ref. [72]. Copyright 2018, Springer Nature.
Fig. 6. (a) Schematic diagram of the morphology evolution of terraced field-like Cu electrode. Reprinted with permission from Ref. [78]. Copyright 2020, John Wiley and Sons. (b) Morphology evolution of Cu NCs observed with operando EC-AFM. Reprinted with permission from Ref. [4]. Copyright 2018, John Wiley and Sons. (c) Observation of the grain boundary utilizing SECCM. Reprinted with permission from Ref. [79]. Copyright 2021, Springer Nature. (d) The reconstruction mechanism of Cu NCs with two distinct stages. Reprinted with permission from Ref. [7]. Copyright 2018, Springer Nature. (e) The distortion and aggregation of Cu NPs to nanograins. (f) Size dependence of catalytic performance of Cu NPs. Reprinted with permission from Ref. [74]. Copyright 2023, Springer Nature.
Fig. 7. (a) Ratio of Cu oxidation states with respect to time at ?1.2 V RHE. Reprinted with permission from Ref. [23]. Copyright 2018, Springer Nature. (b) 6O and 18O contents of the Cu plates after 24? h oxidizing corrosion, measured by TOF-SIMS. (c) Schematic diagram of the reoxidation of Cu(0). Reprinted with permission from Ref. [6]. Copyright 2022, Springer Nature. (d) The Pourbaix diagram of Cu with applied potential and pH as variants. (e) EPR spectra of the corresponding solutions containing 100mmol L?1 DMPO after 24 h resting. (f) Raman spectra of surface Cu2O species at ?0.3 V RHE for 10 s in the electrolyte containing KHC16O3 and H218O. (g) Raman spectra of carbonate species on the Cu electrode in different electrolyte. Reprinted with permission from Ref. [6]. Copyright 2022, Springer Nature.
Fig. 8. (a) Reconstruction of CuxO to metallic Cu and the ratio of low-coordinated Cu before/after the reconstruction. Reprinted with permission from Ref. [82]. Copyright 2024, John Wiley and Sons. (b) Simulated final structures for the reconstruction of CuO and Cu2O. Reprinted with permission from Ref. [35]. Copyright 2023, The American Association for the Advancement of Science. (c) Schematic diagram of confined carbon intermediates. Reprinted with permission from Ref. [83]. Copyright 2020, American Chemical Society. (d) SEM images of the Cu2P2O7 catalyst before electrolysis. (e) SEM images of the Cu2P2O7 catalyst after electrolysis. Reprinted with permission from Ref. [84]. Copyright 2021, John Wiley and Sons.
Fig. 9. (a) TEM images of potential-dependent molecular-scale Cu(100) surface structure and corresponding Raman spectra. Reprinted with permission from Ref. [8]. Copyright 2023, Springer Nature. (b) HRTEM image shows three phases. (c) The behaviour of amorphous Cu in ESLIs. (d,e) Atomic-scale mechanism of surface roughening. Reprinted with permission from Ref. [88]. Copyright 2024, Springer Nature. (f) Schematic diagram of the working principle of the quantitative analysis of Cu(I) transient species. (g) Cu concentration quantified via UV-vis and ICP-MS. Reprinted with permission from Ref. [89]. Copyright 2024, Springer Nature. (h) Quasi-kinetic Monte Carlo simulations of *H and *CO coverages evolution (left) and the vertical displacement map of Cu with *H and *CO coverages as variants (right). (i) Structures with rearranged Cu atoms under different coverage of *H and *CO. (j) Possible mechanism of Cu*CO dimerization. Reprinted with permission from Ref. [86]. Copyright 2024, American Chemical Society.
Fig. 10. (a) In situ SEIRAS spectra of adsorbed CO in 0.1 mol L?1 NaHCO3 and 0.1 mol L?1 KHCO3. ΔGs for hydrogenation (b) and dimerization (c) of *CO. Reprinted with permission from Ref. [92]. Copyright 2024, American Chemical Society. In situ ATR-SEIRAS collected in CO2-saturated 0.05 mol L?1 H2SO4 (d) and 0.05 mol L?1 H2SO4 + 1 mol L?1 Na2SO4 (e). Reprinted with permission from Ref. [11]. Copyright 2024, Springer Nature. (f) The dependence of band intensity of adsorbed CO2 on cation concentration. Reprinted with permission from Ref. [11]. Copyright 2024, Springer Nature. (g) Schematic illustration of the influence of different cation on *CO. Reprinted with permission from Ref. [93]. Copyright 2024, American Chemical Society. (h) TEM images showing the alkali cation-induced corrosion. (i) Voltammetric profiles of the Cu NCs recorded after electrolysis in different electrolyte. Reprinted with permission from Ref. [10]. Copyright 2024, Springer Nature.
Fig. 11. (a) FE of ethylene during electrolysis using alternating “on” and “off” segments with PTFE/Cu GDE at the current density of 150 mA cm-2. Reprinted with permission from Ref. [102]. Copyright 2024, American Chemical Society. (b) Schematic diagram of reduction and reoxidation of the catalyst in pulsed electrolysis. (c) FE of C2H4 for a continuous operation and the two pulsed electrolysis experiments. Reprinted with permission from Ref. [103]. Copyright 2024, American Chemical Society. (d) A schematic illustration of the coverages of *OH, *CO and *O in different pulsed modes. Reprinted with permission from Ref. [104]. Copyright 2024, Springer Nature. (e) Mappings of the Raman spectra acquired during pulsed CORR. (f) Evolution of Raman spectra within one pulse cycle. Reprinted with permission from Ref. [105]. Copyright 2023, American Chemical Society. (g) AFM images showing the reconstructed morphology after potentiostatic or pulsed electrolysis. Reprinted with permission from Ref. [106]. Copyright 2020, Springer Nature. (h) Intensity fits of COr, COs, OHad and Cu-Oad bands obtained from SERS. Reprinted with permission from Ref. [104]. Copyright 2024, Springer Nature.
|
[1] | . 宽带隙半导体在电催化和光催化水分解绿色制氢中的潜在作用[J]. 催化学报, 2025, 68(1): 103-145. |
[2] | 贡立圆, 陶李, 王雷, 符显珠, 王双印. 高温质子交换膜燃料电池阴极抗磷酸中毒催化剂的研究进展[J]. 催化学报, 2025, 68(1): 155-176. |
[3] | 张翔, 李苇杭, 张进, 周豪慎, 钟苗. Cu/Fe2O3异质界面协同级联催化硝酸盐高效电还原为氨[J]. 催化学报, 2025, 68(1): 404-413. |
[4] | Kaining Li, Yasutaka Kuwahara, Hiromi Yamashita. 聚乙烯亚胺辅助合成包含多尺寸Ni物种的中空碳球用于CO2电还原[J]. 催化学报, 2024, 64(9): 66-76. |
[5] | 田文柔, 韩俊, 李娜君, 陈冬赟, 徐庆锋, 李华, 路建美. 通过温度依赖性自转化在SnS2/SnS上进行界面工程以增强压电催化[J]. 催化学报, 2024, 64(9): 166-179. |
[6] | 戴昊, 宋涛, 乐弦, 李福智, 魏淑婷, 徐延超, 舒偲妍, 崔子昂, 王成, 顾均, 段乐乐. 含氮石墨炔上构建Cu-N2单原子电催化剂用于CO2还原制CH4[J]. 催化学报, 2024, 64(9): 123-132. |
[7] | 霍韵滢, 郭聪, 张永乐, 刘婧怡, 张巧, 刘芝婷, 杨光星, 李仁贵, 彭峰. 自支撑Ni(OH)2/NF催化剂高效电催化氧化5-羟甲基糠醛反应研究[J]. 催化学报, 2024, 63(8): 282-291. |
[8] | 肖佳勇, 蒋超, 张辉, 邢卓, 邱明, 余颖. 具有亲水性的无定形棒状核壳结构NiMoP@CuNWs用于中性介质中高效析氢[J]. 催化学报, 2024, 63(8): 154-163. |
[9] | 任清汇, 徐亮, 吕梦雨, 张秩远, 栗振华, 邵明飞, 段雪. 电催化还原反应中的阳离子效应:最新进展[J]. 催化学报, 2024, 63(8): 16-32. |
[10] | 李志鹏, 刘晓斌, 于青平, 屈欣悦, 万均, 肖振宇, 迟京起, 王磊. 用于高电流密度析氢反应电催化剂的研究进展[J]. 催化学报, 2024, 63(8): 33-60. |
[11] | 陈昕煜, 赵聪聪, 任静, 李波, 刘倩倩, 李葳, 杨帆, 陆思琦, 赵宇飞, 颜力楷, 臧宏瑛. 富含氧空位的由多金属氧簇辅助的银基异质结用于高效电催化固氮[J]. 催化学报, 2024, 62(7): 209-218. |
[12] | 梅子雯, 陈克军, 谭耀, 刘秋文, 陈琴, 王其忧, 汪喜庆, 蔡超, 刘康, 傅俊伟, 刘敏. 从富含缺陷的碳载体到酞菁钴的质子供给用于增强CO2电还原[J]. 催化学报, 2024, 62(7): 190-197. |
[13] | 杨树姣, 江鹏飞, 岳楷航, 郭凯, 杨璐娜, 韩金秀, 彭欣阳, 张学鹏, 郑浩铨, 杨韬, 曹睿, 严雅, 张伟. 多配位水分子的焦磷酸锰用于电催化水氧化研究[J]. 催化学报, 2024, 62(7): 166-177. |
[14] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[15] | 陈振霖, 薛静, 武磊, 党昆, 籍宏伟, 陈春城, 章宇超, 赵进才. 协同光电及热效应实现铜光阴极上等离激元催化高效硝酸根还原反应[J]. 催化学报, 2024, 62(7): 219-230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||