催化学报 ›› 2025, Vol. 68: 83-102.DOI: 10.1016/S1872-2067(24)60185-3

• 综述 • 上一篇    下一篇

电催化二氧化碳还原转化到多碳产物: 铜基催化剂动态表面的视角

王金鑫, 张嘉奇*(), 陈晨*()   

  1. 清华大学化学系, 先进稀土材料工程研究中心, 北京 100084
  • 收稿日期:2024-08-30 接受日期:2024-10-09 出版日期:2025-01-18 发布日期:2025-01-02
  • 通讯作者: * 电子邮箱: z-jq20@mails.tsinghua.edu.cn (张嘉奇); cchen@mail.tsinghua.edu.cn (陈晨).
  • 基金资助:
    国家重点研发计划(2023YFB4005100);国家自然科学基金(21925202);国家自然科学基金(U22B2071);西南联合研究生院云南省科技项目(202302AO370017);国际气候变化与碳中和联合任务

Electrochemical CO2RR to C2+ products: A vision of dynamic surfaces of Cu-based catalysts

Jinxin Wang, Jiaqi Zhang*(), Chen Chen*()   

  1. Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2024-08-30 Accepted:2024-10-09 Online:2025-01-18 Published:2025-01-02
  • Contact: * E-mail: z-jq20@mails.tsinghua.edu.cn (J. Zhang),cchen@mail.tsinghua.edu.cn (C. Chen).
  • About author:Jiaqi Zhang (Department of Chemistry, Tsinghua University) received his B.S. degree from China University of Petroleum (East China) in 2020 and is currently pursuing his Ph.D. at Tsinghua University. His research focuses on nanomaterials for electrocatalysis and electrochemical synthesis.
    Chen Chen (Department of Chemistry, Tsinghua University) received his B.S. degree from the Department of Chemistry, Beijing Institute of Technology in 2006, and his Ph.D. degree from the Department of Chemistry, Tsinghua University in 2011. After postdoctoral work at Lawrence Berkeley National Laboratory, he joined the Department of Chemistry at Tsinghua University as an Associate Professor in 2015, and was promoted to Professor with tenure in 2021. His name is in the lists of Highly Cited Researchers 2021‒2023 from Clarivate. His research interests are focused on nanomaterials for catalysis and sustainable energy.
  • Supported by:
    National Key R&D Program of China(2023YFB4005100);National Natural Science Foundation of China(21925202);National Natural Science Foundation of China(U22B2071);Yunnan Provincial Science and Technology Project at Southwest United Graduate School(202302AO370017);International Joint Mission On Climate Change and Carbon Neutrality

摘要:

现代社会对天然化石燃料的持续大量消耗导致过量的CO2排放, 进而引发了气候变化、环境恶化和能源危机. 在此背景下, 电化学CO2还原(CO2RR)能将间歇性的电能转化为化学燃料和其他增值产品,不仅为清洁能源的利用开辟了新的道路, 也有希望实现碳循环. 目前, 除了少数特殊情况外, 铜基催化剂是能够实现高效产生多碳产物的首选催化剂. 在CO2还原领域, 对铜基材料已进行了数十年的研究, 但仍然存在诸多争议点. 例如, 测试过程中存在重复性较差, 铜基材料的表面敏感性高, 电解质添加剂和碱金属的阳离子效应复杂以及微环境调控难度大等问题. 这是因为在电催化条件下, 催化剂表面存在持续的动态变化, 这也为建立铜基催化剂的构效关系带来了困难. 铜基材料的重构虽然可能导致催化剂失活和选择性降低, 但同时也可能产生新的催化活性位点, 并形成动态表面/界面. 这表明重构不仅仅是一种失活模式, 也可能是铜基材料独特催化活性的内在原因. 随着表征技术和理论研究的不断深入, 可以通过多种证据交叉验证, 构建出完整且动态的构效关系, 从而从动态表面的视角重新诠释CO2RR过程中铜基材料的诸多特性与未解之谜.
本文首先简单介绍了各类多碳产物的生成机理与C-C偶联理论. 以静态表面模型的视角概括了促进多碳产物生成的催化剂结构因素, 并讨论了具有不同晶面、化学态和配位数的铜催化剂的产物选择性: 特定的晶面的暴露、一价铜的保留和低配位铜的丰富度等因素能促进多碳产物的形成. 随后, 基于先进原位表征技术的发展与应用, 讨论了各种重构现象和结构因素(晶面、化学态、配位环境)的动态变化. 这意味着以往静态表面模型的视角可能带来误解, 无法建立准确的构效关系. 因此需要更深入地探究动态表面. 随着原位表征技术的不断深入发展, 研究者可以从原子级的机制探索催化活性与表面的动态构效关系, 透过最新的谱学和原位电镜结果, 铜基材料重构的原子级机制得以被深入研究. Cu+与CO等表面吸附物种在该过程中发挥了关键作用, 进而导致了微观层面的流动非晶相界面与宏观尺度的破碎、聚结、粗糙化等重构现象. 随后, 讨论了如何从动态表面的视角理解电解质和电解模式的影响 最后, 展望了多维原位表征的发展和存在的潜在问题, 并讨论了基于神经网络、大语言模型和蒙特卡洛算法在研究重构过程中的可能应用, 并探讨了基于人工智能的机器化学家被应用于探究CO2电还原的可能性.
综上所述, 本文深入系统地总结了铜基催化剂在CO2电催化中的动态重构行为, 阐述了该重构的原子级机制, 以动态表面的视角讨论了电解质和电解模式的影响. 最后, 对该领域未来的研究方向进行了展望, 以期推动对铜催化剂动态表面的更深入研究, 进而推动CO2电还原的快速发展.

关键词: 电催化, CO2电还原, 铜基催化剂, 重构, 多碳产物, 表面结构演化

Abstract:

Electrochemical reduction of CO2 (CO2RR) to form high-energy-density and high-value-added multicarbon products has attracted much attention. Selective reduction of CO2 to C2+ products face the problems of low reaction rate, complex mechanism and low selectivity. Currently, except for a few examples, copper-based catalysts are the only option capable of achieving efficient generation of C2+ products. However, the continuous dynamic reconstruction of the catalyst causes great difficulty in understanding the structure-performance relationship of CO2RR. In this review, we first discuss the mechanism of C2+ product generation. The structural factors promoting C2+ product generation are outlined, and the dynamic evolution of these structural factors is discussed. Furthermore, the effects of electrolyte and electrolysis conditions are reviewed in a vision of dynamic surface. Finally, further exploration of the reconstruction mechanism of Cu-based catalysts and the application of emerging robotic AI chemists are discussed.

Key words: Electrocatalysis, CO2RR, Cu-based catalyst, Reconstruction, Multicarbon product, Structural evolution