催化学报 ›› 2025, Vol. 68: 155-176.DOI: 10.1016/S1872-2067(24)60162-2
贡立圆a,b,c, 陶李c,d,*(), 王雷a, 符显珠a,*(
), 王双印c,d,*(
)
收稿日期:
2024-08-16
接受日期:
2024-10-08
出版日期:
2025-01-18
发布日期:
2025-01-02
通讯作者:
* 电子信箱: taoli@hnu.edu.cn (陶李),
xz.fu@szu.edu.cn (符显珠),
shuangyinwang@hnu.edu.cn (王双印).基金资助:
Liyuan Gonga,b,c, Li Taoc,d,*(), Lei Wanga, Xian-Zhu Fua,*(
), Shuangyin Wangc,d,*(
)
Received:
2024-08-16
Accepted:
2024-10-08
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: About author:
Li Tao received his Master degree in 2016 and his Ph.D. degree in 2019 from Hunan University under the supervision of Prof. Shuangyin Wang. He is currently an associate professor of the College of Chemistry and Chemical Engineering, Hunan University. His research interests are in thermoelectric coupling catalysis, defect chemistry and fuel cell.Supported by:
摘要:
燃料电池作为一种清洁、高效的电化学能源转换器件, 能量转换效率高, 是未来氢能应用的主要途径之一. 高温聚合物电解质膜燃料电池(HT-PEMFC)工作温度为120‒300 °C, 具有水、热管理系统简单, 反应动力学速率快, 抗CO等杂质中毒等优点. HT-PEMFC更加简化的系统和对高纯氢的低依赖度等诸多优势将有望突破传统PEMFC应用瓶颈, 推动燃料电池和氢能的发展. 目前, HT-PEMFC主要以磷酸掺杂的聚合物膜作为电解质, 磷酸在催化剂表面的强吸附会堵塞催化剂活性位点, 导致铂用量是目前低温PEMFC的10倍, 增加了燃料电池的实际应用成本. 目前, 对HT-PEMFC抗磷酸毒化催化剂的研究较少, 缺乏对毒化机制的科学认识. 因此, 对抗磷酸毒化催化材料研究的最新进展进行系统地梳理和总结对进一步推动HT-PEMFC的发展具有重要意义.
本文综述了磷酸掺杂聚苯并咪唑(PBI)电解质膜应用的HT-PEMFC中磷酸阴离子严重吸附和毒害阴极催化剂的瓶颈问题. 首先介绍了催化剂磷酸中毒的基本原理, 为针对性地解决抗中毒问题提供深入的理论根据. 此外, 由于催化剂表界面发生的磷酸阴离子吸附/脱附行为至关重要, 因此对相关的表征技术进行了系统地归纳总结. 其次, 重点介绍了铂基电催化剂的研究进展, 详细地阐述了目前的抗磷酸中毒策略包括晶面调控策略、合金策略、有机物小分子隔离策略、碳/氧化物包覆策略以及磷酸分布迁移调控策略, 并且介绍了一些成功的典型实例, 对目前优越的电池性能进行了总结. 另外强调了具有磷酸中毒免疫能力的铁基材料的重要性, 用以取代易中毒且昂贵的铂基材料, 是目前最具有应用潜力的非贵金属催化剂. 介绍了铁基催化剂近年在HT-PEMFC抗毒化研究的成功研究案例: 包括(1)对抗磷酸阴离子吸附的位点构型探究, 通过对几何/电子结构进行构建实现更高的抗磷酸毒化能力和本征活性; (2)对位点密度和可利用性的提升研究, 通常铁基催化剂为金属单原子位点锚定于碳基底, 而单原子位点的密度通常低于2%且大部分嵌入碳层深处, 因此位点密度提升及孔结构构建对于位点利用率至关重要.
综上, 本综述系统地总结了HT-PEMFC阴极抗磷酸毒化催化剂的研究进展、抗毒化策略和机理以及具体应用. 未来, 需要继续发展抗磷酸毒化的铂基材料, 并持续加强开发新型非贵金属催化剂, 最终真正获得经济高效实用的HT-PEMFC. 此外, 对于抗毒化机制的研究仍然需要大力加强, 包括开发更先进的原位表征手段, 深入研究抗毒化催化剂的性质和作用机理. 本文为开发高效的抗毒化催化剂提供参考, 最终推动高温燃料电池的实际应用.
贡立圆, 陶李, 王雷, 符显珠, 王双印. 高温质子交换膜燃料电池阴极抗磷酸中毒催化剂的研究进展[J]. 催化学报, 2025, 68: 155-176.
Liyuan Gong, Li Tao, Lei Wang, Xian-Zhu Fu, Shuangyin Wang. Focus on the catalysts to resist the phosphate poisoning in high-temperature proton exchange membrane fuel cells[J]. Chinese Journal of Catalysis, 2025, 68: 155-176.
Fig. 1. (A) PO4 adsorbed through Pt-O in the different mode. Reprinted with permission from Ref. [54]. Copyright 2013, American Chemical Society. (B) Trends in ORR activity concerned about oxygen binding strength (ΔEO: O binding energy from DFT calculation) of various metal. Reprinted with permission from Ref. [53]. Copyright 2004, American Chemical Society. (C) Schematic illustration of d band theory of a transition metal surface. Reprinted with permission from Ref. [60]. Copyright 2005, Springer Nature.
Fig. 2. The adsorption competition of H, OH, and PO4? on the Pt surface (A) and (B) at different cell voltages, (C) temperature, (D) phosphoric acid concentration Reprinted with permission from Ref. [33]. Copyright 2013, American Chemical Society.
Fig. 3. (A) H3PO3 oxidation behavior observed in CV of the Pt electrode in single H3PO4. (B) Anodic/cathodic charge ratio. Reprinted with permission from Ref. [25] Copyright 2023, American Chemical Society. (C) Poisoning effect of both H3PO3 and H3PO4 at different potential observed from coordination numbers of Pt-Pt, Pt-O, Pt-P gained through EXAFS fitting. Reprinted with permission from Ref. [64]. Copyright 2022, American Chemical Society.
Fig. 4. (A) Phosphoric acid adsorption characteristics in the CV of Pt3Co/C. Reprinted with permission from Ref. [29]. Copyright 2011, Elsevier. (B) N2O reduction curves of Pt3Co/C [29] affected by PA. (C) Schematic of the in-situ XAS setup. Reprinted with permission from Ref. [68], Copyright 2015, IOP Publishing, Ltd. (D) Schematic presentation of the Δμ and δΔμ method. Reprinted with permission from Ref. [33]. Copyright 2013, American Chemical Society.
Fig. 5. (A) Schematic of EC-SERS setup. (B) SER spectra get in (C) CV scans at Au surface in different pH solutions. Reprinted with permission from Ref. [72]. Copyright 2015, Elsevier. (D) FTIR spectra taken from a platinum electrode at different potentials in 0.015 mol L-1 phosphate (79% H2PO4-, 21% H3PO4). (E) The H2PO4- in C2V and Cs symmetries at low and high potentials respectively. Reprinted with permission from Ref. [10] Copyright 1992, Elsevier.
Fig. 6. (A) Supercell structure and top view supercell of Ptskin-Pt3M. (B) Adsorption strength of Ptskin-Pt3M determined by DFT calculation. (C) DOS near the Fermi level. Reprinted with permission from Ref. [51], Copyright 2017, Springer Nature. (D) Schematic diagram of “Self-Healing” effect. [81] (E) The scaling relationship of the O2 and PO4 adsorption energy on Pt3M(111) alloy surface. Reprinted with permission from Ref. [19]. Copyright 2023, Elsevier. (F) The LSV of PtRhCu@Pt/C with and without phosphate anion. (G) Performance of HT-PEMFC at 160 °C. (H) Stability test at 200 mA cm?2. Reprinted with permission from Ref. [81]. Copyright 2024, American Chemical Society.
Fig. 7. (A) CV of PtSn(111) single crystals electrodes. LSV of Pt(111) (B) and PtSn(111) (C) single crystals electrodes with/without PA. Reprinted with permission from Ref. [30] Copyright 2010, Royal Society of Chemistry. (D) The charge density difference of the CuPtFe alloy catalysts. (E) H2PO4? adsorption energy of Cu-PtFe and PtFe catalysts. (F) The activity of catalysts with/without the presence of H3PO4. (G) HT-PEMFC performance. (H) H2-air fuel cell performance. (I) Durability test results at 200 mA cm?2. Reprinted with permission from Ref. [80].Copyright 2021, Wiley.
Fig. 8. (A) Schematic illustration of Cu alloying strategy. The d-band center (B), H3PO4 anion adsorption energy (C), image (D) of the HT-RDE. (E) Relationship of PA coverage, O-reduction area, and E1/2 of O-PtCu/S-C and reference catalysts by HT-RDE test in 0.5 mol L?1 H3PO4. (F). Fuel cell performance in H2-O2 at 160 °C. Reprinted with permission from Ref. [67]. Copyright 2024, Elsevier. (G) Current densities of pure Pt and PtAu alloy catalysts with/without PA. (H) CV of PtAu alloy catalysts with/without PA. Reprinted with permission from Ref. [72]. Copyright 2015, Elsevier. (I) Current densities of pure Pt, PtCo physical mixture catalysts and PtCo alloy catalysts with/without PA. Reprinted with permission from Ref. [76]. Copyright 2022, Elsevier.
Fig. 9. (A) The schematic presentation of the anti-poisoning effect of cyanide. (B) The LSV of Pt(111)/Pt(111)-CNad in the phosphoric acid and perchloric acid. Reprinted with permission from Ref. [82]. Copyright2010, Springer Nature. (C) Visual explanation of manipulating the d-band structure by adsorbed oleylamine. (D) Increased factors compared to Pt/C related to the difference of the εd. Reprinted with permission from Ref. [84]. Copyright 2013, American Chemical Society. (E) Schematic illustration of the coulombic barrier on Pt surface. Reprinted with permission from Ref. [86]. Copyright 2015, Elsevier. (F) The relationship of activity and the varying coverages of butylamine. Reprinted with permission from Ref. [83]. Copyright 2016, Elsevier.
Fig. 10. (A) Schematic diagram showing the molecular sieve layer effect of carbon shell structure. (B) The difference value in mass activity of different catalysts with/without carbon shells before and after ADTs in 0.1 mol L?1 HClO4 with and without 0.1 mol L?1 H3PO4. Reprinted with permission from Ref. [87]. Copyright 2023, Wiley. (C) LSV of O-Pt-Fe@NC/C and Pt/C with and without H3PO4. (D) Full fuel performance at 160 °C under H2/O2. Reprinted with permission from Ref. [78]. Copyright 2020, Elsevier. (E) LSV of PtCo@MoOx-NC with and without PA. (F) The mass activity, durability, and H3PO4 tolerance of PtCo@MoOx-NC comparing to PtC. Reprinted with permission from Ref. [88]. Copyright 2023, Royal Society of Chemistry.
Fig. 11. (A) Graphical representation of SiO2 promoting PA distribution. LSV (B) and CV (C) of CNT@SiO2-Pt with/without the H3PO4. HT-PEMFC performance (D) and stability (E) in a single cell. Reprinted with permission from Ref. [90]. Copyright 2021, Springer Nature. (F) mass and specific activity the prepared PtP2/C and Pt/C-TKK catalysts with/without H3PO4. (G) Activity and durability of HT-PEMFC under H2/O2 at 180 °C. Reprinted with permission from Ref. [52]. Copyright 2023, Royal Society of Chemistry.
T (°C) | v at an./ca. (mL min−1) | P (bar) | Membrane/thickness (mm) | Cat./Pt loading of ca. (mg cm−2) | PPD (mW cm−2) | Ref. |
---|---|---|---|---|---|---|
160 | H2-60/air-50 | — | PA/PBI | Cu-PtFe/NC/0.5 | 432.6 | [ |
160 | H2-60/O2-50 | — | PA/PBI | Cu-PtFe/NC/ 0.5 | 793.5 | [ |
160 | H2/air | — | PA/PES-PVPa | CNT@SiO2-Pt/1.0 | 486 | [ |
160 | H2/O2 | — | PA/PES-PVPa | CNT@SiO2-Pt/1.0 | 765 | [ |
220 | H2/O2 | — | PA/PES-PVPa | CNT@SiO2-Pt/.0 | 1061 | [ |
160 | H2-200/Air-600 | — | PA/PBI | Pt2Cu/C/1.5 | 383.4 | [ |
180 | H2/O2 | 1.5 | PA/PBI | PtP2/C/0.5 | 1180 | [ |
160 | H2-100/O2-100 | — | PA/PBI/SiO2 | O-Pt-Fe@NC/C/1 | 384 | [ |
160 | H2-100/O2-100 | — | PA/PBI | O-PtCu/S-C/0.5 | 800.5 | [ |
160 | H2-100/O2-200 | — | PA/PBI | PtRhCu@Pt/C/1.5 | 529 | [ |
160 | H2-100/Air-200 | — | PA/PBI | PtRhCu@Pt/C/1.5 | 977 | [ |
Table 1 Summary of recent performance of HT-PEMFC using Pt-based catalysts. T, an./ca., v, P and PPD refer to temperature, anode/cathode, flow rate pressure and peak power density, respectively.
T (°C) | v at an./ca. (mL min−1) | P (bar) | Membrane/thickness (mm) | Cat./Pt loading of ca. (mg cm−2) | PPD (mW cm−2) | Ref. |
---|---|---|---|---|---|---|
160 | H2-60/air-50 | — | PA/PBI | Cu-PtFe/NC/0.5 | 432.6 | [ |
160 | H2-60/O2-50 | — | PA/PBI | Cu-PtFe/NC/ 0.5 | 793.5 | [ |
160 | H2/air | — | PA/PES-PVPa | CNT@SiO2-Pt/1.0 | 486 | [ |
160 | H2/O2 | — | PA/PES-PVPa | CNT@SiO2-Pt/1.0 | 765 | [ |
220 | H2/O2 | — | PA/PES-PVPa | CNT@SiO2-Pt/.0 | 1061 | [ |
160 | H2-200/Air-600 | — | PA/PBI | Pt2Cu/C/1.5 | 383.4 | [ |
180 | H2/O2 | 1.5 | PA/PBI | PtP2/C/0.5 | 1180 | [ |
160 | H2-100/O2-100 | — | PA/PBI/SiO2 | O-Pt-Fe@NC/C/1 | 384 | [ |
160 | H2-100/O2-100 | — | PA/PBI | O-PtCu/S-C/0.5 | 800.5 | [ |
160 | H2-100/O2-200 | — | PA/PBI | PtRhCu@Pt/C/1.5 | 529 | [ |
160 | H2-100/Air-200 | — | PA/PBI | PtRhCu@Pt/C/1.5 | 977 | [ |
Fig. 12. (A) Schematic diagram of catalyst synthesis steps. TEM (B), aberration-corrected scanning TEM (C), and STEM-EDS mapping (D). (E) LSV for phosphate ions poisoning effect on Pt/C and Fe-NC, Fe-NCP. (F) HT-PEMFC performance under H2/O2. (G) Free energy diagram of ORR reaction. (H) Adsorption energy of phosphate ions on Pt(111), Fe-NC, Fe-NCP, and Fe-NPC. Reprinted with permission from Ref. [96].Copyright 2022, Springer Nature.
Fig. 13. TEM (A), STEM-EDS mapping (B), aberration-corrected scanning TEM (C,D) of FeCu/N-CNTs. (E) Scheme of the phosphate promoting effect. (F) LSV of ORR on FeCu catalysts with the presence of PA. (G) Potential energy on Fe, Cu, Fe-Cu diatomic sites with different distance with/without PA. (H) XPS of Cu 2p affected by PA. Fuel cell activity at 230 °C under H2/O2 (I) and stability test (J). Reprinted with permission from Ref. [98]. Copyright 2021, Elsevier.
Fig. 14. (A) LSV of FeSA-G and Pt/C in with/without the H3PO4. Fuel cell performance at 160 °C (B) and 230 °C (C) under H2/O2. (D) Stability of the cells at 0.5 V. Reprinted with permission from Ref. [101]. Copyright 2019, Wiley.
Fig. 15. (A) TEM images of pore structure. (B) LSV of Pt/C and Fe-N-C with/without PA. (C) Accelerated durability tests. (D) Single-cell performance at 150 °C under H2/O2. Reprinted with permission from Ref. [104]. Copyright 2020 American Chemical Society.
T (°C) | gas-v at an./ca. (mL min−1) | P (bar) | Membrane | Cat./catalysts loading (mg cm−2) | PPD (mW cm−2) | Ref. |
---|---|---|---|---|---|---|
160 | H2/O2 | — | PA/PBI | BP-FeNC/7.8 | 184.6 | [ |
150 | H2/O2 | 1.5 | PA/PBI | LEDFe5-NH3/3.8 | 260 | [ |
240 | H2-150/O2-100 | — | PA/SiO2/PBI | FeSA/HP/4 | 266 | [ |
160 | H2-100/O2-100 | — | SiO2/PA/PBI | FeSA-G/0.3Fe | 276 | [ |
230 | H2-100/O2-100 | — | SiO2/PA/PBI | FeSA-G/0.3Fe | 325 | [ |
160 | H2/O2 | — | PBI | Fe-NCP/2.5 | 357 | [ |
230 | H2-100/O2-100 | — | SiO2/PA/PBI | FeCu/N-CNTs/4 | 302 | [ |
160 | H2-100/O2-200 | — | SiO2/PA/PBI | Fe-N-C-1100/3 | 229 | [ |
Table 2 Summary of recent performance of HT-PEMFC using Fe-based catalysts. T, an./ca., v, P and PPD refer to temperature, anode/ cathode, flow rate pressure and peak power density, respectively.
T (°C) | gas-v at an./ca. (mL min−1) | P (bar) | Membrane | Cat./catalysts loading (mg cm−2) | PPD (mW cm−2) | Ref. |
---|---|---|---|---|---|---|
160 | H2/O2 | — | PA/PBI | BP-FeNC/7.8 | 184.6 | [ |
150 | H2/O2 | 1.5 | PA/PBI | LEDFe5-NH3/3.8 | 260 | [ |
240 | H2-150/O2-100 | — | PA/SiO2/PBI | FeSA/HP/4 | 266 | [ |
160 | H2-100/O2-100 | — | SiO2/PA/PBI | FeSA-G/0.3Fe | 276 | [ |
230 | H2-100/O2-100 | — | SiO2/PA/PBI | FeSA-G/0.3Fe | 325 | [ |
160 | H2/O2 | — | PBI | Fe-NCP/2.5 | 357 | [ |
230 | H2-100/O2-100 | — | SiO2/PA/PBI | FeCu/N-CNTs/4 | 302 | [ |
160 | H2-100/O2-200 | — | SiO2/PA/PBI | Fe-N-C-1100/3 | 229 | [ |
|
[1] | 姜建伟, 崔仁洛, 申庭澈, 尹城镐, 朴纪映. 酰基钴基催化剂用于高活性高稳定性环氧化物羰基化制备β-内酯[J]. 催化学报, 2025, 68(1): 336-344. |
[2] | 江文涌, 葛创新, 王功伟, 陆君涛, 肖丽, 庄林. 介孔碳载体缓解碱性聚电解质燃料电池阳极水淹[J]. 催化学报, 2024, 57(2): 51-58. |
[3] | 殷诗怡, 许实龙, 李子睿, 李帅, 薛锟泽, 张万群, 储胜启, 梁海伟. 硫代硫酸钠辅助合成高Pt含量燃料电池金属间电催化剂[J]. 催化学报, 2024, 66(11): 292-301. |
[4] | 王功伟, 肖丽, 庄林. 广义氢能体系和相关电化学技术[J]. 催化学报, 2024, 56(1): 1-8. |
[5] | 卢明佳, 梁乐程, 冯彬彬, 常译文, 黄志宏, 宋慧宇, 杜丽, 廖世军, 崔志明. 燃料电池多孔碳载体高石墨化的超快速碳热冲击策略[J]. 催化学报, 2023, 52(9): 228-238. |
[6] | 刘炎昌, 田新龙, 韩业创, 陈亚楠, 胡文彬. 高温热冲击制备用于催化反应的高熵合金纳米颗粒[J]. 催化学报, 2023, 48(5): 66-89. |
[7] | 刘轩, 梁嘉顺, 李箐. 燃料电池金属间Pt-M合金氧还原催化剂的设计原理及合成方法[J]. 催化学报, 2023, 45(2): 17-26. |
[8] | 张颖贞, 黄剑莹, 赖跃坤. 氨氧化技术在清洁能源开发和污水净化中的研究进展[J]. 催化学报, 2023, 54(11): 161-177. |
[9] | 詹昊霖, 纪丽菲, 曹烁晖, 冯烨, 姜艳霞, 黄玉清, 孙世刚, 陈忠. 电化学与空间层选核磁共振波谱联用原位监测多碳醇氧化[J]. 催化学报, 2023, 53(10): 171-179. |
[10] | 邱春禹, 万里洋, 王宇成, Muhammad Rauf, 洪宇浩, 袁家寅, 周志有, 孙世刚. 工况表征方法揭示燃料电池催化层中过氧化氢浓度[J]. 催化学报, 2022, 43(7): 1918-1926. |
[11] | 牛慧婷, 夏琛沣, 黄磊, Shahid Zaman, Thandavarayan Maiyalagan, 郭巍, 游波, 夏宝玉. 一维铂基纳米结构氧还原电催化剂的设计与合成[J]. 催化学报, 2022, 43(6): 1459-1472. |
[12] | 柏景森, 杨莉婷, 金钊, 葛君杰, 邢巍. 用于氧还原反应的Pt基金属间化合物纳米晶催化剂[J]. 催化学报, 2022, 43(6): 1444-1458. |
[13] | 卢海娇, 李显龙, Sabiha Akter Monny, 王志亮, 王连洲. 基于过渡金属氧化物半导体上光电催化生产过氧化氢[J]. 催化学报, 2022, 43(5): 1204-1215. |
[14] | 周波, 李梦雨, 李莹莹, 刘彦伯, 逯宇轩, 李巍, 吴雨洁, 霍甲, 王燕勇, 陶李, 王双印. Co诱导双位点协同效应实现高效肼电催化氧化[J]. 催化学报, 2022, 43(4): 1131-1138. |
[15] | 王同宝, 韩光泰, 王子运, 王昱沆. 克服高温二氧化碳电解产生的碳沉积问题[J]. 催化学报, 2022, 43(12): 2938-2945. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||