催化学报 ›› 2022, Vol. 43 ›› Issue (6): 1444-1458.DOI: 10.1016/S1872-2067(21)63991-8
柏景森a,b,†, 杨莉婷a,b,†, 金钊a,*(), 葛君杰a,b,#(
), 邢巍a,b,$(
)
收稿日期:
2021-09-30
接受日期:
2021-09-30
出版日期:
2022-06-18
发布日期:
2022-04-14
通讯作者:
金钊,葛君杰,邢巍
作者简介:
第一联系人:†共同第一作者
基金资助:
Jingsen Baia,b,†, Liting Yanga,b,†, Zhao Jina,*(), Junjie Gea,b,#(
), Wei Xinga,b,$(
)
Received:
2021-09-30
Accepted:
2021-09-30
Online:
2022-06-18
Published:
2022-04-14
Contact:
Zhao Jin, Junjie Ge, Wei Xing
About author:
First author contact:† Contributed equally to this work.
Supported by:
摘要:
质子交换膜燃料电池(PEMFC)是一种具有大规模商业化生产前景的能源技术, 它具有能量密度高、转换效率高、环境友好等优点, 受到人们的广泛关注. 其中, 燃料电池的阴极氧还原反应(ORR)具有较高的反应过电位, 需要贵金属铂催化, 但是铂的成本高昂、资源短缺, 极大地限制了燃料电池的市场化, 因此降低铂负载量, 提高铂基催化剂的活性和稳定性, 是燃料电池商用化的关键. 目前, 通过合金化、形貌控制等方法优化后, 铂基催化剂的质量活性和比活性都得到了极大的提高. 其中, 将铂与其他金属尤其是3d过渡金属合金化已被认为是减少铂负载量并提高ORR催化性能的最有效方法之一. 通过合理设计并精准制备铂基合金、调控铂表面电子结构可以大大提高催化剂的本征活性以及耐久性. 但是, 普通合金化制备的合金一般是无序的, 存在活性位点结构不同, 过渡金属溶解导致稳定下降等问题, 将其有序化形成金属间化合物可有效解决上述问题. 金属间化合物具有长程有序的晶体结构, 原子均有序地占据晶格中的相应格点, 以金属键或离子键相互作用, 能够有效提高活性位点催化活性和防止过渡金属的溶解. 此外, 金属间化合物通过压缩应变调控Pt-Pt键长, 优化铂与氧还原反应中间物种的吸附能, 提高本征催化活性和稳定性.
本文综述了PEMFCs电催化剂的铂基金属间化合物的最新研究进展, 分别从热力学和动力学上理解金属间化合物形成的过程与条件, 为设计金属间化合物奠定理论基础; 从成分、尺寸和形貌等方面分别阐述了近年来铂基金属间化合物的发展, 不仅关注铂基催化剂在的三电极体系下的优异性能, 而且对其在质子交换膜燃料电池的实际应用时的性能表达进行了详细的阐述, 总结了一些提升金属间化合物性能的策略; 同时, 针对目前的发展瓶颈, 总结了Pt基有序金属间纳米晶面临的挑战和未来前景.
本文可以帮助读者更深入地了解铂基金属间化合物纳米晶在ORR领域的最新进展, 对铂基金属间化合物催化剂的合理设计和催化性能改进策略提出更深入的见解, 为促进PEMFC的市场化发展提供一条新思路.
柏景森, 杨莉婷, 金钊, 葛君杰, 邢巍. 用于氧还原反应的Pt基金属间化合物纳米晶催化剂[J]. 催化学报, 2022, 43(6): 1444-1458.
Jingsen Bai, Liting Yang, Zhao Jin, Junjie Ge, Wei Xing. Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction[J]. Chinese Journal of Catalysis, 2022, 43(6): 1444-1458.
Fig. 1. (a) Oxygen reduction reaction pathway. (b) Free energy diagram for the four-electron associative ORR on Pt(111). (c) Relationship between the binding free energy of *OOH (ΔGOOH) and that of *O (ΔGO) with respect to ∆GOH on the (111) surfaces of various metals. (d) Curve limiting potential with respect to free energy drawn according to Eqs. 10-13; here, one side of the solid blue line represents strong adsorption, whereas the other side of the solid green line represents weak adsorption. Reprinted from Ref. [21] with permission. Copyright 2018, American Chemical Society.
Fig. 2. Schematic of conditions for the formation of an AmBn intermetallic phase in an A-B binary system at thermodynamic equilibrium. (a) Phase diagram showing the equilibria between disordered solid solution (blue), ordered intermetallic compound (orange), and mixed phases (white) as a function of composition and temperature. At T1 (T1 should be higher than the order-to-disorder transition temperature), a disordered atomic arrangement is preferred over the full range of possible compositions. At T2, an ordered phase appears within a specific range of compositions near the stoichiometric point (marked by a red bar). (b) Diagram showing the Gibbs free energies of the disordered (blue) and ordered (orange) phases as a function of composition at two temperatures: T1 (dashed) and T2 (solid). Reprinted from Ref. [26] with permission. Copyright 2017, John Wiley and Sons.
Fig. 3. (a) Schematic of the core-shell structure formed by acid washing the catalyst. (b) Mass activity of L10-FePt/Pt and commercial Pt/C at the beginning of life (BOL) and after ADT (60 °C). (c) Half-wave potential of L10-FePt/Pt and commercial Pt/C at BOL and after ADT (60 °C). (a-c) Reprinted from Ref. [13] with permission. Copyright 2018, American Chemical Society. (d) High-angle annular dark-field scanning tunneling electron microscopy (HAADF-STEM) image of fully ordered fct-Pt-Fe and hysteresis loops of partially ordered fct-FePt and fully ordered fct-FePt; ORR polarization of fully ordered fct NPs (e), partially ordered fct-Fe NPs (f), and C-fcc-FePt NPs (g) before and after ADT. (d-f) Reprinted from Ref. [33] with permission. Copyright 2015, American Chemical Society. (h,i) Schematic of the synthesis and HAADF-STEM image of L10-FePt/rGO. Reprinted from Ref. [53] with permission. Copyright 2020, American Chemical Society.
Fig. 4. (a) Schematic of L10-CoPt/Pt NPs with a Pt shell (blue, Co; white, Pt). (b,c) Enlarged STEM image of L10-CoPt/Pt NPs with Pt shell (blue, Co; red, Pt). (d) SA and MA of commercial Pt/C, etched A1-CoPt, and L10-CoPt/Pt measured at 0.9 V vs. RHE. (e) ORR polarization curves of L10-CoPt/Pt NPs from BOL to end of life (EOL). (f) MA of L10-CoPt/Pt NPs measured at BOL and EOL in a fuel cell. (a-f) Reprinted from Ref. [55] with permission. Copyright ORR polarization curves of Pt3Co with different Co contents in the Co-metal-organic framework (g) and Pt/40Co-nanocrystals sintered at different temperatures in O2-saturated 0.1 mol/L HClO4 at room temperature at a rotation speed of 900 rpm (h). (i) Potential cycling stability tests of Pt/40Co-NC-900 at 0.6-1.0 V at a scan rate of 50 mV/s. (j) STEM-electron energy loss spectroscopy images of Pt3Co nanoparticle. (g-j) Reprinted from Ref. [56] with permission. Copyright 2019, Elsevier.
Fig. 5. HAADF-STEM images of cubic (a), concave (b), and defect-rich cubic (c) intermetallic Pt3Sn. (a-c) Reprinted from Ref. [67] with permission. Copyright 2016, John Wiley and Sons. (d) Schematic illustration of the structural change of the FePtAu NPs upon annealing. Reprinted from Ref. [72] with permission. Copyright 2012 American Chemical Society. (e) Schematic of L10-Pt-Ni-Co synthesis (acac = acetylacetonate). (f) Linear sweep voltammetry curves of commercial Pt/C, C-A1-PtNi0.8Co0.2, and C-L10-PtNi0.8Co0.2. (g) Mass activities of commercial Pt/C, C-A1-PtNi0.8Co0.2, and C-L10-PtNi0.8Co0.2 at 0.9 V. (e-g) Reprinted from Ref. [76] with permission. Copyright 2019, John Wiley and Sons. (h) Image of L10-W-PtCo. (i) Mass activities of L10-W-PtCo/C and P/C before and after ADT. (j) Pt-Pt bond lengths and oxygen adsorption energies of the studied catalysts. (h-j) Reprinted from Ref. [77] with permission. Copyright 2019 John Wiley and Sons.
Fig. 6. (a) Formation of ordered fct Pt-Fe NPs and N-doped carbon shells. Reprinted from Ref. [35] with permission. Copyright 2015, American Chemical Society. (b) HAADF images of sub-Pt3Co-MC. (c) HAADF-STEM of Pt3Co NPs. (d) Model of ordered Pt3Co NPs. (b-d) Reprinted from Ref. [80] with permission. Copyright 2021, PNAS. (e) HAADF-STEM image of L10-PtZn NP. (f) ORR polarization curves of L10-PtZn/Pt-C. (g) H2-O2 fuel cell polarization curves of L10-PtZn. (e-g) Reprinted from Ref. [84] with permission. Copyright 2020, John Wiley and Sons.
Fig. 7. (a) STEM-ADF image of Pt3Co NWs/C. (b) HAADF-STEM image of Pt3Co NWs/C. (c) ORR-specific activities and mass activities of Pt/C and PtxCoy. (a-c) Reprinted from Ref. [56] with permission. Copyright 2015 American Chemical Society. (d) Synthesis of D-Pt3Co NWs and O-Pt3Co NWs. (e) Transmission electron microscopy (TEM) and high-resolution (HR)TEM images of O-Pt3Co NWs. (f) ORR polarization curves and MAs of different catalysts. (d-f) Reprinted from Ref. [86] with permission. Copyright 2019, American Chemical Society. (g) Schematic of PtPb nanoplate; (h) SAs and MAs of different catalysts [66]. (i) Schematic of Meso-PtNi. (j) ORR polarization curves before and after the ADT of Pt/C, Meso-PtNi_1, and Meso-PtNi_2. (g-j) Reprinted from Ref. [87] with permission. Copyright 2016 John Wiley and Sons.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 卢明佳, 梁乐程, 冯彬彬, 常译文, 黄志宏, 宋慧宇, 杜丽, 廖世军, 崔志明. 燃料电池多孔碳载体高石墨化的超快速碳热冲击策略[J]. 催化学报, 2023, 52(9): 228-238. |
[6] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[7] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[8] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[9] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[10] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[11] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[12] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[13] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[14] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[15] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||