催化学报 ›› 2022, Vol. 43 ›› Issue (6): 1459-1472.DOI: 10.1016/S1872-2067(21)63862-7

• 综述 • 上一篇    下一篇

一维铂基纳米结构氧还原电催化剂的设计与合成

牛慧婷a, 夏琛沣a, 黄磊a, Shahid Zamana, Thandavarayan Maiyalaganb,*(), 郭巍a, 游波a,#(), 夏宝玉a,$()   

  1. a华中科技大学化学与化工学院, 能量转换与存储材料化学教育部重点实验室, 材料化学与服役失效湖北省重点实验室, 生物医用与防护材料湖北省工程研究中心, 武汉光电国家研究中心, 湖北武汉430074, 中国
    b印度SRM科学技术学院化学系电化学能源实验室, 卡坦库拉图尔, 印度
  • 收稿日期:2021-05-02 接受日期:2021-05-02 出版日期:2022-06-18 发布日期:2022-04-14
  • 通讯作者: Thandavarayan Maiyalagan,游波,夏宝玉
  • 基金资助:
    国家自然科学基金(22075092);华中科技大学学术前沿青年团队项目(2018QYTD15);新能源化学与器件学科创新引智基地(B21003)

Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis

Huiting Niua, Chenfeng Xiaa, Lei Huanga, Shahid Zamana, Thandavarayan Maiyalaganb,*(), Wei Guoa, Bo Youa,#(), Bao Yu Xiaa,$()   

  1. aSchool of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, China
    bElectrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
  • Received:2021-05-02 Accepted:2021-05-02 Online:2022-06-18 Published:2022-04-14
  • Contact: Thandavarayan Maiyalagan, Bo You, Bao Yu Xia
  • About author:First author contact:

    Bao Yu Xia is currently a full professor in the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology (HUST). He received his Ph.D. degree in Materials Science and Engineering from Shanghai Jiao Tong University in 2010. He worked at Nanyang Technological University from 2011 to 2016. He has served as an Editorial board member in Chin. J. Catal. since 2020. His research interests focus on nanocatalysts in sustainable energy and environment technologies including fuel cells, batteries and carbon dioxide conversion.

  • Supported by:
    National Natural Science Foundation of China(22075092);Program for HUST Academic Frontier Youth Team(2018QYTD15);The Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)

摘要:

燃料电池因其转换效率高和环境友好而引起了人们的广泛关注. 然而, 缓慢的阴极氧还原反应(ORR)动力学严重限制了燃料电池的性能. 铂基材料是非常有前景的ORR催化剂, 但是铂储量稀少和价格昂贵阻碍了其在燃料电池领域的应用. 因此, 设计和开发新型纳米结构催化剂, 降低铂用量和提高铂利用率是非常必要的. 一维铂基纳米结构因其高比表面积、高导电率和优异的抗腐蚀性, 在ORR催化中表现出巨大的应用潜力.
本文综述了一维铂基催化剂的合成、设计和优化策略以及在ORR应用方面的最新进展. 简单介绍了ORR的反应机理和一维材料的结构优势, 从合成策略上详细讨论了模板法和无模板法两个合成路径, 并强调了外部形貌(纳米棒、纳米线和纳米管)及内部组成(无序合金和金属间化合物)的优化, 以及一维铂基纳米材料的多维组装结构. 在合成方面, 可通过调节模板、表面活性剂、封装剂和结构导向剂等控制生长过程获得更多样的一维结构及其多维组装结构. 相对于模板法, 无模板法在制备工艺上更加简单. 此外, 不同的一维结构可通过改善电化学活性表面积及其原子利用率显著提升ORR催化性能. 同时, 可通过几何效应、应变效应及其协同效应调节铂的电子结构, 进而提高催化性能. 在化学组成上, 过渡金属的引入不仅可以降低铂的用量并提高铂的利用率, 还可以调节铂的d带中心, 增强催化活性. 与无序合金相比, 金属间化合物由于增强的Pt(5d)-M(3d)相互作用同样展现出优异的催化性能. 物理结构和化学结构的综合调控可极大地改善一维铂基结构的电催化性能. 本文还就一维铂基材料的合成创新、结构设计、物理表征和理论研究等提出了展望, 指出了一维铂基催化剂的应用潜力, 为燃料电池ORR催化剂的发展和实际应用指明了方向.

关键词: 燃料电池, 氧还原反应, 电催化剂, 铂合金, 一维结构

Abstract:

Fuel cells have attracted extensive attention due to their high conversion efficiency and environmental friendliness. However, their wider application is limited by the poor activity and high cost of platinum (Pt), which is widely used as the cathode catalyst to overcome the slow kinetics associated with oxygen reduction reaction (ORR). Pt-based composites with one-dimensional (1D) nanoarchitectures demonstrate great advantages towards efficient ORR catalysis. This review focuses on the recent advancements in the design and synthesis of 1D Pt-based ORR catalysts. After introducing the fundamental ORR mechanism and the advanced 1D architectures, their synthesis strategies (template-based and template-free methods) are discoursed. Subsequently, their morphology and structure optimization are highlighted, followed by the superstructure assembly using 1D Pt-based blocks. Finally, the challenges and perspectives on the synthesis innovation, structure design, physical characterization, and theoretical investigations are proposed for 1D Pt-based ORR nanocatalysts. We anticipate this study will inspire more research endeavors on efficient ORR nanocatalysts in fuel cell application.

Key words: Fuel cells, Oxygen reduction reaction, Electrocatalyst, Pt alloy, One-dimensional