催化学报 ›› 2022, Vol. 43 ›› Issue (6): 1459-1472.DOI: 10.1016/S1872-2067(21)63862-7
牛慧婷a, 夏琛沣a, 黄磊a, Shahid Zamana, Thandavarayan Maiyalaganb,*(), 郭巍a, 游波a,#(
), 夏宝玉a,$(
)
收稿日期:
2021-05-02
接受日期:
2021-05-02
出版日期:
2022-06-18
发布日期:
2022-04-14
通讯作者:
Thandavarayan Maiyalagan,游波,夏宝玉
基金资助:
Huiting Niua, Chenfeng Xiaa, Lei Huanga, Shahid Zamana, Thandavarayan Maiyalaganb,*(), Wei Guoa, Bo Youa,#(
), Bao Yu Xiaa,$(
)
Received:
2021-05-02
Accepted:
2021-05-02
Online:
2022-06-18
Published:
2022-04-14
Contact:
Thandavarayan Maiyalagan, Bo You, Bao Yu Xia
About author:
First author contact:Bao Yu Xia is currently a full professor in the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology (HUST). He received his Ph.D. degree in Materials Science and Engineering from Shanghai Jiao Tong University in 2010. He worked at Nanyang Technological University from 2011 to 2016. He has served as an Editorial board member in Chin. J. Catal. since 2020. His research interests focus on nanocatalysts in sustainable energy and environment technologies including fuel cells, batteries and carbon dioxide conversion.
Supported by:
摘要:
燃料电池因其转换效率高和环境友好而引起了人们的广泛关注. 然而, 缓慢的阴极氧还原反应(ORR)动力学严重限制了燃料电池的性能. 铂基材料是非常有前景的ORR催化剂, 但是铂储量稀少和价格昂贵阻碍了其在燃料电池领域的应用. 因此, 设计和开发新型纳米结构催化剂, 降低铂用量和提高铂利用率是非常必要的. 一维铂基纳米结构因其高比表面积、高导电率和优异的抗腐蚀性, 在ORR催化中表现出巨大的应用潜力.
本文综述了一维铂基催化剂的合成、设计和优化策略以及在ORR应用方面的最新进展. 简单介绍了ORR的反应机理和一维材料的结构优势, 从合成策略上详细讨论了模板法和无模板法两个合成路径, 并强调了外部形貌(纳米棒、纳米线和纳米管)及内部组成(无序合金和金属间化合物)的优化, 以及一维铂基纳米材料的多维组装结构. 在合成方面, 可通过调节模板、表面活性剂、封装剂和结构导向剂等控制生长过程获得更多样的一维结构及其多维组装结构. 相对于模板法, 无模板法在制备工艺上更加简单. 此外, 不同的一维结构可通过改善电化学活性表面积及其原子利用率显著提升ORR催化性能. 同时, 可通过几何效应、应变效应及其协同效应调节铂的电子结构, 进而提高催化性能. 在化学组成上, 过渡金属的引入不仅可以降低铂的用量并提高铂的利用率, 还可以调节铂的d带中心, 增强催化活性. 与无序合金相比, 金属间化合物由于增强的Pt(5d)-M(3d)相互作用同样展现出优异的催化性能. 物理结构和化学结构的综合调控可极大地改善一维铂基结构的电催化性能. 本文还就一维铂基材料的合成创新、结构设计、物理表征和理论研究等提出了展望, 指出了一维铂基催化剂的应用潜力, 为燃料电池ORR催化剂的发展和实际应用指明了方向.
牛慧婷, 夏琛沣, 黄磊, Shahid Zaman, Thandavarayan Maiyalagan, 郭巍, 游波, 夏宝玉. 一维铂基纳米结构氧还原电催化剂的设计与合成[J]. 催化学报, 2022, 43(6): 1459-1472.
Huiting Niu, Chenfeng Xia, Lei Huang, Shahid Zaman, Thandavarayan Maiyalagan, Wei Guo, Bo You, Bao Yu Xia. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis[J]. Chinese Journal of Catalysis, 2022, 43(6): 1459-1472.
Fig. 1. (a) Schematic ORR mechanism; (b) ORR activity vs. oxygen binding energy. (b) Adapted with permission from [38]. Copyright 2004, American Chemical Society. (c) Oxygenate adsorption on different PtM alloys. (c) Adapted with permission from [42]. Copyright 2009, Springer Nature.
Fig. 2. Schematic diagrams of hard-template (a) and soft-template (b) methods for preparing 1D Pt nanostructures. (a) Adapted with permission from [55]. Copyright 2008, Elsevier B.V. Adapted with permission from [58]. Copyright 2009, Wiley-VCH. (b) Adapted with permission from [64]. Copyright 2012, American Chemical Society. Adapted with permission from [69]. Copyright 2015, Wiley-VCH. Adapted with permission from [63]. Copyright 2017, Elsevier B.V. Adapted with permission from [70]. Copyright 2004, Wiley-VCH.
Fig. 3. SEM images of Pt gauzes (a) and Pt nanowires on Pt gauzes (b). (a,b) Adapted with permission from [75]. Copyright 2008, American Chemical Society. TEM images (c,d) and durability result (e) of PtFe nanowires. (c?e) Adapted with permission from [80]. Copyright 2019, American Chemical Society.
Fig. 4. (a) Schematic diagram of tip growth; (b?d) TEM images of Pt nanowires obtained with different reaction durations. (b?d) Adapted with permission from [28]. Copyright 2013, American Chemical Society. (e?h) TEM observations of a short Pt3Fe nanorod growth. (e?h) Adapted with permission from [83]. Copyright 2012, AAAS.
Fig. 5. HRTEM image (a) and catalytic activity (b) of jagged Pt nanowires. (a,b) Adapted with permission from [91]. Copyright 2016, AAAS. SEM image (c) and durability result (d) of Pt nanotubes, Pt-black and Pt/C. (c,d) Adapted with permission from [59]. Copyright 2007, Wiley-VCH. (e) TEM image of Pt nanowire membrane, inset is optical image. (f) Stability result of Pt nanowire membrane, Pt-black and Pt/C. (e,f) Adapted with permission from [30]. Copyright 2011, Wiley-VCH. (g) TEM image of the meso-structured Pt network, inset is model structure; (h) ORR polarization curves of meso-structured Pt network before and after the durability test. (g,h) Adapted with permission from [98]. Copyright 2012, American Chemical Society.
Fig. 6. HAADF-STEM image (a), EDS mapping (b) and stability result (c) of PtGa nanowires. (a?c) Adapted with permission from [108]. Copyright 2019, American Chemical Society. HRTEM image (d), STEM-EELS line scan (e) and ORR activity (f) of FePtCu nanorods. (d?f) Adapted with permission from [71]. Copyright 2013, American Chemical Society. TEM image (g), STEM-ADF image, EDS mapping (h) and durability test (i) of Pt3Co nanowires. (g?i) Adapted with permission from [103]. Copyright 2016, Springer Nature.
Fig. 7. SEM images (a) and stability test (b) of mesoporous PtCo nanotubes. (a,b) Adapted with permission from [119]. Copyright 2019, American Chemical Society. TEM images (c), electrochemical activity (d), durability test (e) and single cell polarization plots (f) of bunched PtNi nanocage and other catalysts. (c?f) Adapted with permission from [120]. Copyright 2019, AAAS.
Catalyst | Specific activity at 0.9 V (mA cm-2) | Mass activity at 0.9 V (A mg-1) | Ref. |
---|---|---|---|
Pt-skin zigzag-like PtFe nanowire | 4.34 | 2.11 | [ |
Pt nanowire | 3.90 | 0.126 | [ |
1D PtNi nanowire | 9.2 | 4.15 | [ |
2.5 nm PtFe nanowire | 1.53 | 0.844 | [ |
Twisty PtFe nanowire | 3.49 | 2.87 | [ |
Jagged Pt nanowire | 11.5 | 13.6 | [ |
PtCu nanotube | 2.57 | — | [ |
Pt coated Pd nanotube | — | 1.8 | [ |
Nanoporous Pt6Ni alloy | 1.23 | 0.65 | [ |
PtCuCoNi 3D nanoporous alloy | 1.64 a | 0.72a | [ |
Nanoporous Pt-Fe nanowire | 0.383 | 0.091 | [ |
Hierarchical PtCo nanowire | 7.12 | 3.71 | [ |
1nm-thick PtNi nanowire | 0.647 | 0.546 | [ |
PtNiAu nanowire | 2.59 | 0.651 | [ |
PtGa ultrathin nanowire | 4.31 | 1.89 | [ |
Subnano PtNiCo nanowire | 5.11 | 4.20 | [ |
PtNiPd core-shell nanowire | 3.48 | 1.93 | [ |
PtCo mesoporous nanotube | 0.99 | — | [ |
Bunched Pt-Ni nanocage | 5.16 | 3.52 | [ |
Table 1 ORR activity of recent reported 1D Pt-based catalysts at half-cell level.
Catalyst | Specific activity at 0.9 V (mA cm-2) | Mass activity at 0.9 V (A mg-1) | Ref. |
---|---|---|---|
Pt-skin zigzag-like PtFe nanowire | 4.34 | 2.11 | [ |
Pt nanowire | 3.90 | 0.126 | [ |
1D PtNi nanowire | 9.2 | 4.15 | [ |
2.5 nm PtFe nanowire | 1.53 | 0.844 | [ |
Twisty PtFe nanowire | 3.49 | 2.87 | [ |
Jagged Pt nanowire | 11.5 | 13.6 | [ |
PtCu nanotube | 2.57 | — | [ |
Pt coated Pd nanotube | — | 1.8 | [ |
Nanoporous Pt6Ni alloy | 1.23 | 0.65 | [ |
PtCuCoNi 3D nanoporous alloy | 1.64 a | 0.72a | [ |
Nanoporous Pt-Fe nanowire | 0.383 | 0.091 | [ |
Hierarchical PtCo nanowire | 7.12 | 3.71 | [ |
1nm-thick PtNi nanowire | 0.647 | 0.546 | [ |
PtNiAu nanowire | 2.59 | 0.651 | [ |
PtGa ultrathin nanowire | 4.31 | 1.89 | [ |
Subnano PtNiCo nanowire | 5.11 | 4.20 | [ |
PtNiPd core-shell nanowire | 3.48 | 1.93 | [ |
PtCo mesoporous nanotube | 0.99 | — | [ |
Bunched Pt-Ni nanocage | 5.16 | 3.52 | [ |
|
[1] | 卢明佳, 梁乐程, 冯彬彬, 常译文, 黄志宏, 宋慧宇, 杜丽, 廖世军, 崔志明. 燃料电池多孔碳载体高石墨化的超快速碳热冲击策略[J]. 催化学报, 2023, 52(9): 228-238. |
[2] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[3] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[4] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[5] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[6] | 张光颖, 刘旭, 张欣欣, 梁志坚, 邢耕宇, 蔡斌, 沈迪, 王蕾, 付宏刚. P修饰提高Fe-N-C的氧反应活性用于高稳定的锌-空气电池[J]. 催化学报, 2023, 49(6): 141-151. |
[7] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[8] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[9] | 张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48(5): 15-31. |
[10] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[11] | 唐甜蜜, 王寅, 韩憬怡, 张巧巧, 白雪, 牛效迪, 王振旅, 管景奇. 用于氧还原反应的双原子钴-铁催化剂[J]. 催化学报, 2023, 46(3): 48-55. |
[12] | 吴则星, 高玉肖, 王子璇, 肖卫平, 王新萍, 李彬, 李镇江, 刘晓斌, 马天翼, 王磊. 表面富集的超小铂纳米颗粒耦合缺陷磷化钴用于高效的电催化水分解和柔性锌空气电池[J]. 催化学报, 2023, 46(3): 36-47. |
[13] | 刘轩, 梁嘉顺, 李箐. 燃料电池金属间Pt-M合金氧还原催化剂的设计原理及合成方法[J]. 催化学报, 2023, 45(2): 17-26. |
[14] | 刘小妮, 刘晓斌, 李彩霞, 杨波, 王磊. 缺陷工程在金属基电池中的研究进展[J]. 催化学报, 2023, 45(2): 27-87. |
[15] | 樊哲琛, 万浩, 余浩, 葛君杰. 用于氧还原电催化的Fe-M-N-C基双原子催化剂的研究进展[J]. 催化学报, 2023, 54(11): 56-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||