催化学报 ›› 2025, Vol. 69: 1-16.DOI: 10.1016/S1872-2067(24)60209-3
• 综述 • 下一篇
王铭智, 房文生, 朱德雨, 夏琛沣, 郭巍(), 夏宝玉(
)
收稿日期:
2024-10-24
接受日期:
2024-12-20
出版日期:
2025-02-18
发布日期:
2025-02-10
通讯作者:
电子信箱: 基金资助:
Mingzhi Wang, Wensheng Fang, Deyu Zhu, Chenfeng Xia, Wei Guo(), BaoYu Xia(
)
Received:
2024-10-24
Accepted:
2024-12-20
Online:
2025-02-18
Published:
2025-02-10
Contact:
E-mail: About author:
Wei Guo is currently an associate professor in the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology (HUST), China. He obtained his B.S. in 2012 and Ph.D. degree in 2017 from HUST. Following the completion of his postdoctoral research at the University of Tennessee, Knoxville, and Oak Ridge National Laboratory (USA) in 2021, he joined the faculty at HUST. His research interests are in energy-efficient CO2 capture and conversion.Supported by:
摘要:
绿电驱动的电化学CO2还原(ECR)制燃料和高附加值化学品技术是实现CO2减排和利用的有效途径. 利用多功能串联催化剂或级联反应器, 能够实现CO2深度还原制取更高价值的多碳产物. 然而, 串联电化学CO2还原(T-ECR)涉及多步骤反应, 难以精确控制CO2高效转化的反应过程, 是目前T-ECR技术发展面临的挑战. 因此, 系统研究反应机制, 开发高效催化剂和反应器是亟待解决的关键问题.
本文从全新的角度总结了T-ECR技术研究的最新进展, 重点介绍了纳米级多功能催化剂的串联设计, 并讨论了电催化反应串联与反应器串联工程的优化策略. 首先简述了串联催化的基本原理, 介绍了设计多功能催化剂或级联反应器实现各级反应耦合的策略. 紧接着重点讨论了不同尺度串联策略和方法的研究进展, 包括微观尺度上多功能催化剂不同活性位点之间的协同串联催化, 介观尺度上复合催化剂的定制与催化剂之间反应的配置, 以及宏观尺度上反应器级联催化的设计. 在微观尺度上, 强调了通过精准调控催化剂组分来优化电子转移、质子转移与中间体的传递, 以促进多碳产物的生成; 在介观尺度上, 探讨了串联电极结构对流体力学的影响; 在宏观尺度上, 着重讨论了级联反应器设计, 根据级联方式选择配置高效串联催化剂, 提高工业规模CO2电解反应的整体转化效率. 最后, 介绍了结合原位X射线吸收光谱、扫描隧道显微镜等先进表征技术与机器学习、理论计算的研究方法, 阐述了串联催化反应的微观机理, 预测不同反应路径的可行性, 并加速筛选与设计性能优异催化剂, 从而进一步提升T-ECR技术的效率.
综上, 本文从催化剂、催化反应和反应器的角度总结了T-ECR技术研究的最新进展, 通过深入理解串联催化反应的机制, 提出了多尺度催化剂设计与反应器优化的研究思路, 为解决T-ECR技术面临的挑战提供了潜在解决方案. T-ECR技术的进一步发展有望实现大规模CO2转化的商业化应用, 为社会可持续发展作出积极贡献.
王铭智, 房文生, 朱德雨, 夏琛沣, 郭巍, 夏宝玉. 电化学CO2还原催化剂与反应器串联设计[J]. 催化学报, 2025, 69: 1-16.
Mingzhi Wang, Wensheng Fang, Deyu Zhu, Chenfeng Xia, Wei Guo, BaoYu Xia. Tandem design on electrocatalysts and reactors for electrochemical CO2 reduction[J]. Chinese Journal of Catalysis, 2025, 69: 1-16.
Tandem scale | Intermediate | Catalyst | Product | FE (%) | Ref. |
---|---|---|---|---|---|
Microscopic scale | *CO | CuZn alloy | C2H4 | 33.3 | [ |
*CO | CuAg mixture | C2+ | N/A | [ | |
*CO | GBs rich Cu | C2+ | N/A | [ | |
*CO | AgCu SANP | C2+ | 94.0 | [ | |
*CO, HCOO(H) | SnS2/Sn1-O3G | CH3CH2OH | 82.5 | [ | |
*CO | Cu/Au heterojunctions | CH3CH2OH | 60.0 | [ | |
*CO | Cu2O-Pd-Ag | C2H4 | 63.2 | [ | |
*CO | Pd-Cu2O | C2+ | 80.8 | [ | |
Mesoscopic scale | CO | Cu/Ni-N-C | C2H4 | 62.0 | [ |
CO | Cu/ZnO | C2+ | N/A | [ | |
CO | Cu@Ag | C2+ | 67.6% | [ | |
CO | Cu/Fe-N-C | C2+ | 90.0 | [ | |
CO | CoPc@HC/Cu | C2+ | 82.0 | [ | |
CO | Ag-Cu | C2+ | 80.2 | [ | |
CO | Cu/Ni-N-C | C2+ | 68.0 | [ | |
CO | Cu/Ag | CH3CH2OH | 56.5 | [ | |
Macroscopic scale | CO | (NiO-YSZ/YSZ/GDC/LSC)/Cu:Py:SSC | C2H4 | 65.0 | [ |
CO | Ni-SAG/Cu2O | N-propanol | 15.9 | [ | |
CH3COOH | Cu/microorganism fermentation | long-chain compounds | N/A | [ | |
CH3CH2OH | Cu/enzymatic bioreactor | C6 lactol | N/A | [ | |
CO, H2 | Ni-N-C/Cu | C2H4, CH3CH2OH | N/A | [ | |
CO, O2 | Ag-HMT/Pd (II) | organic amides | N/A | [ | |
HCOO(H) | Bi NWs/bioreactors | C6 sugar | N/A | [ | |
CO | Ag/Cu | CH3COOH | 30-35 | [ |
Table 1 Major advances in T-ECR at different scales.
Tandem scale | Intermediate | Catalyst | Product | FE (%) | Ref. |
---|---|---|---|---|---|
Microscopic scale | *CO | CuZn alloy | C2H4 | 33.3 | [ |
*CO | CuAg mixture | C2+ | N/A | [ | |
*CO | GBs rich Cu | C2+ | N/A | [ | |
*CO | AgCu SANP | C2+ | 94.0 | [ | |
*CO, HCOO(H) | SnS2/Sn1-O3G | CH3CH2OH | 82.5 | [ | |
*CO | Cu/Au heterojunctions | CH3CH2OH | 60.0 | [ | |
*CO | Cu2O-Pd-Ag | C2H4 | 63.2 | [ | |
*CO | Pd-Cu2O | C2+ | 80.8 | [ | |
Mesoscopic scale | CO | Cu/Ni-N-C | C2H4 | 62.0 | [ |
CO | Cu/ZnO | C2+ | N/A | [ | |
CO | Cu@Ag | C2+ | 67.6% | [ | |
CO | Cu/Fe-N-C | C2+ | 90.0 | [ | |
CO | CoPc@HC/Cu | C2+ | 82.0 | [ | |
CO | Ag-Cu | C2+ | 80.2 | [ | |
CO | Cu/Ni-N-C | C2+ | 68.0 | [ | |
CO | Cu/Ag | CH3CH2OH | 56.5 | [ | |
Macroscopic scale | CO | (NiO-YSZ/YSZ/GDC/LSC)/Cu:Py:SSC | C2H4 | 65.0 | [ |
CO | Ni-SAG/Cu2O | N-propanol | 15.9 | [ | |
CH3COOH | Cu/microorganism fermentation | long-chain compounds | N/A | [ | |
CH3CH2OH | Cu/enzymatic bioreactor | C6 lactol | N/A | [ | |
CO, H2 | Ni-N-C/Cu | C2H4, CH3CH2OH | N/A | [ | |
CO, O2 | Ag-HMT/Pd (II) | organic amides | N/A | [ | |
HCOO(H) | Bi NWs/bioreactors | C6 sugar | N/A | [ | |
CO | Ag/Cu | CH3COOH | 30-35 | [ |
Fig. 1. Fig.1. Micro-scale bimetallic synergistic tandem catalysis. (a) Schematic illustration of the tandem catalysis mechanism over AgCu SANP. (b) Comparison of electrochemical performance of AgCu SANP with other catalysts at 0.65 V vs. RHE. (a,b) Reproduced with permission from Ref. [56]. Copyright 2023, Springer Nature. (c) Proposed mechanism of C2 production on the Au NBP-Cu JNC catalysts. (d) Electrochemical CO2 reduction performances of the Au NBP-Cu JNC catalysts. (d) Electrochemical CO2 reduction performances of the Au NBP-Cu JNC catalysts. (c,d) Reproduced with permission from Ref. [61]. Copyright 2021, John Wiley and Sons.
Fig. 2. CuZn and CuPd bimetals for synergistic tandem catalysis. (a) Mechanism of T-ECR on the surface of metallic CuZn NPs. (b) The FEs at varied potentials of the products on CuZn alloy. (a,b) Reproduced with permission from Ref. [69]. Copyright 2018, American Chemical Society. (c) Three distinct catalyst active sites promote electroreduction of CO2 to C2+ products. (d) The FEs at varied potentials of the products on Pd-Cu catalyst at different applied current density. (c,d) Reproduced with permission from Ref. [70]. Copyright 2024, John Wiley and Sons.
Fig. 3. Monometallic Cu and Sn-based catalysts used in T-ECR. (a) Process diagram of ECR to C2H4 on the Pd-decorated Cu2O-Ag catalyst. Reproduced with permission from Ref. [73]. Copyright 2024, American Chemical Society. (b) Process diagram of ECR to C2H5OH on AuAgCu NSs. (b) Reproduced with permission from Ref. [74]. Copyright 2022, Springer Nature. (c) Cu-g-C3N4 with synergistic active centers for tandem electrochemical ECR. (d) Key reaction intermediates of CH3CH2OH generation on Cu-C3N4. (c,d) Reproduced with permission from Ref. [76]. Copyright 2017, American Chemical Society. (e) A schematic illustration of the tandem reaction during CO2 reduction to ethanol over SnS2/Sn1-O3G. (f) Reaction energy profiles and the corresponding intermediate structures (1?7) for producing ethanol via the ECR on the Sn1-O3G catalyst. Reproduced with permission from Ref. [16]. Copyright 2023, Springer Nature.
Fig. 4. Tandem reactions with core-shell structure and its T-ECR performance. (a) Schematic illustration of tandem reactions for ECR to C2 over core-shell Ag-Cu catalyst. (b) The corresponding TEM, EDS elemental mapping, and HRTEM images of core-shell Ag-Cu 5 wt% catalyst. (a,b) Reproduced with permission from Ref. [86]. Copyright 2023, Elsevier. (c) Schematic illustration of tandem reactions for T-ECR to C2 over core-shell Cu-Ag catalyst. (d) The corresponding TEM, EDS elemental mapping, and HRTEM of core-shell Cu-Ag catalyst. (d) Reproduced with permission from Ref. [87]. Copyright 2021, John Wiley and Sons.
Fig. 5. The tandem reactions with a vertically layered structure based on GDE. (a) Schematic illustration of CO2-CO-C2+ tandem conversion on a layered GDE/Cu/ZnO electrode. (b) The EDS elemental mapping images of the cross-section of GDE/Cu/ZnO electrode. (c) The FE and (d) partial current density of CO, C2H4, and C2+ products on the bare Cu1.0 electrode, Cu1.0&ZnO0.20 mixed electrode, and Cu1.0/ZnO0.20 tandem electrode. (a?d) Reproduced with permission from Ref. [92]. Copyright 2020, Elsevier.
Fig. 6. Relay tandem reactions based on GDE/B/A at the mesoscale under alkaline conditions. (a) Schematic illustration of stacked segmented GDE/Cu/Ag catalysts. (b) Schematic illustration of the flow-channel geometry and gas concentration changing along the flow channel during the tandem reduction of CO2. (c) FE and partial current densities of C2H4 and C2+ products as a function of cell voltage on doubly loaded Cu/Fe-N-C s-GDE as conducted in a flow cell. (a?c) Reproduced with permission from Ref. [94]. Copyright 2022, Springer Nature. (d) Schematic illustration of the spatially decoupled strategy via tandem catalysis in the acidic ECR system, showing CO2 to CO and CO to C2+. (e) Schematic illustration of the Cu/CoPc@HC tandem catalysis and the electron transfer and mass transport in acidic ECR. (f) Current density towards ECR products on the CoPc@HC/Cu tandem electrode and Cu electrode in an acidic buffer electrolyte of 0.5 mol L?1 H3PO4 and 0.5 mol L?1 KH2PO4 with 2.5 mol L?1 KCl in a flow cell. (d?f) Reproduced with permission from Ref. [43]. Copyright 2024, Springer Nature. (g) Production of C2+ products on Cu catalyst in alkaline (the one above) and in acidic conditions (the one below). (h) Schematic illustration of GDE/Cu/Ni-N-C tandem system. (i) Total FE of C2+ products on different electrodes. (g?i) Reproduced with permission from Ref. [111]. Copyright 2024, Elsevier.
Fig. 7. Reactor cascade on a macroscopic scale. (a) Tandem devices for the CO2-to-C2H4 process via two separate electrochemical cells. (a) Reproduced with permission from Ref. [113]. Copyright 2021, Elsevier. (b) Schematic illustration of the tandem electrothermo-catalysis system. (b) Reproduced with permission from Ref. [120]. Copyright 2024, John Wiley and Sons. (c) Schematic illustration of the customizable electrocatalytic-biocatalytic flow system for solar-driven food production directly from CO2. (c) Reproduced with permission from Ref. [21]. Copyright 2024, Springer Nature. (d) Schematic illustration of the in vitro artificial sugar synthesis system. (d) Reproduced with permission from Ref. [22]. Copyright 2022, Springer Nature. (e) Schematic illustration of cell-free CO2 valorization to C6 pharmaceutical precursors via a novel electro-enzymatic process. (e) Reproduced with permission from Ref. [20]. Copyright 2022, American Chemical Society.
|
[1] | 刘京, 马贤迪, 卢政汉, 申东元, 赵阿雅, 韩晸宇, 龙剑平, 周震, 焦梦改, 李国承, 赵恩爱. 靶向构筑高性能单原子铂基氢析出反应电催化剂[J]. 催化学报, 2025, 69(2): 259-270. |
[2] | 贡立圆, 陶李, 王雷, 符显珠, 王双印. 高温质子交换膜燃料电池阴极抗磷酸中毒催化剂的研究进展[J]. 催化学报, 2025, 68(1): 155-176. |
[3] | 王金鑫, 张嘉奇, 陈晨. 电催化二氧化碳还原转化到多碳产物: 铜基催化剂动态表面的视角[J]. 催化学报, 2025, 68(1): 83-102. |
[4] | 肖佳勇, 蒋超, 张辉, 邢卓, 邱明, 余颖. 具有亲水性的无定形棒状核壳结构NiMoP@CuNWs用于中性介质中高效析氢[J]. 催化学报, 2024, 63(8): 154-163. |
[5] | 陈振霖, 薛静, 武磊, 党昆, 籍宏伟, 陈春城, 章宇超, 赵进才. 协同光电及热效应实现铜光阴极上等离激元催化高效硝酸根还原反应[J]. 催化学报, 2024, 62(7): 219-230. |
[6] | 孙泽晖, 来壮壮, 赵影影, 陈建富, 马巍. 解析单颗粒电化学分步电子转移步骤用于识别电催化剂本征活性[J]. 催化学报, 2024, 60(5): 262-271. |
[7] | 廖伟, 周乾, 龙瑾, 吴臣中, 王彬, 彭琼, 曹建新, 王青梅. 碳载体空位工程助力原位合成的Pt纳米枝晶促进电催化氧气还原[J]. 催化学报, 2024, 59(4): 260-271. |
[8] | 李可欣, 王茀学, 张紫晨, 刘正星, 马宇辉, 王崇臣, 王鹏. ZIF-62(Co)玻璃催化活化过一硫酸盐降解水中微污染物[J]. 催化学报, 2024, 59(4): 118-125. |
[9] | 屠振涛, 何晓洋, 刘璇, 熊登科, 左娟, 吴德礼, 汪建营, 陈作锋. 通过钨对镍活性位点的电子改性实现苯甲胺选择性氧化耦合制氢[J]. 催化学报, 2024, 58(3): 146-156. |
[10] | 郭一博, 薛圆媛, 周震. 铠甲催化剂助力锌-空气电池: 氮掺杂石墨烯上超薄碳封装铁镍合金增强氧电催化[J]. 催化学报, 2024, 58(3): 206-215. |
[11] | 李金池, 周万海, 于书棋, 卿晨, 何剑, 曾亮, 王尧, 陈云贵. 构建NiCu/Ni3N异质结构催化剂以实现碱性条件下高效氢氧化反应[J]. 催化学报, 2024, 67(12): 186-193. |
[12] | 魏莹莹, 孙昱垚, 于耀东, 石月, 吴哲, 王磊, 赖建平. 4d金属掺杂液态Ga用于宽N2浓度下的高效氨电合成[J]. 催化学报, 2024, 67(12): 194-203. |
[13] | 谢典科, 杨天仪, 马重阳, 董崇礼, 王双印, 邹雨芹. 硫空位促进硝基芳烃与芳基醛电化学还原偶联高选择性电合成亚胺[J]. 催化学报, 2024, 65(10): 206-216. |
[14] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[15] | 赵梦, 徐晶, 宋术岩, 张洪杰. 核壳/蛋黄壳纳米反应器用于串联催化[J]. 催化学报, 2023, 50(7): 83-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||