催化学报 ›› 2025, Vol. 69: 1-16.DOI: 10.1016/S1872-2067(24)60209-3

• 综述 •    下一篇

电化学CO2还原催化剂与反应器串联设计

王铭智, 房文生, 朱德雨, 夏琛沣, 郭巍(), 夏宝玉()   

  1. 华中科技大学化学与化工学院, 能量转换与存储材料化学教育部重点实验室, 材料化学与服役失效湖北省重点实验室, 湖北武汉 430074
  • 收稿日期:2024-10-24 接受日期:2024-12-20 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: wguo@hust.edu.cn (郭巍), byxia@hust.edu.cn (夏宝玉).
  • 基金资助:
    国家重点研发计划(2021YFA1600800);国家重点研发计划(2021YFA1501000);国家自然科学基金(22105081);国家自然科学基金(22075092);国家自然科学基金(223B2901);国家杰出青年科学基金(22325901);中央高校基本科研业务费(YCJJ20242227)

Tandem design on electrocatalysts and reactors for electrochemical CO2 reduction

Mingzhi Wang, Wensheng Fang, Deyu Zhu, Chenfeng Xia, Wei Guo(), BaoYu Xia()   

  1. Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, China
  • Received:2024-10-24 Accepted:2024-12-20 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: wguo@hust.edu.cn (W. Guo), byxia@hust.edu.cn (B. Xia).
  • About author:Wei Guo is currently an associate professor in the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology (HUST), China. He obtained his B.S. in 2012 and Ph.D. degree in 2017 from HUST. Following the completion of his postdoctoral research at the University of Tennessee, Knoxville, and Oak Ridge National Laboratory (USA) in 2021, he joined the faculty at HUST. His research interests are in energy-efficient CO2 capture and conversion.
    Bao Yu Xia is currently a full professor in the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology (HUST), China. He received his Ph.D. degree in Materials Science and Engineering at Shanghai Jiao Tong University (SJTU) in 2010. He worked at Nanyang Technological University (NTU) from 2011 to 2016. He is Distinguished Young Scholars Recipients of National Natural Science Foundation of China (2024). His research interests are in energy chemistry and material science.
  • Supported by:
    National Key Research and Development Program of China(2021YFA1600800);National Key Research and Development Program of China(2021YFA1501000);National Natural Science Foundation of China(22105081);National Natural Science Foundation of China(22075092);National Natural Science Foundation of China(223B2901);National Science Foundation for Distinguished Young Scholars(22325901);Fundamental Research Funds for the Central Universities(YCJJ20242227)

摘要:

绿电驱动的电化学CO2还原(ECR)制燃料和高附加值化学品技术是实现CO2减排和利用的有效途径. 利用多功能串联催化剂或级联反应器, 能够实现CO2深度还原制取更高价值的多碳产物. 然而, 串联电化学CO2还原(T-ECR)涉及多步骤反应, 难以精确控制CO2高效转化的反应过程, 是目前T-ECR技术发展面临的挑战. 因此, 系统研究反应机制, 开发高效催化剂和反应器是亟待解决的关键问题.

本文从全新的角度总结了T-ECR技术研究的最新进展, 重点介绍了纳米级多功能催化剂的串联设计, 并讨论了电催化反应串联与反应器串联工程的优化策略. 首先简述了串联催化的基本原理, 介绍了设计多功能催化剂或级联反应器实现各级反应耦合的策略. 紧接着重点讨论了不同尺度串联策略和方法的研究进展, 包括微观尺度上多功能催化剂不同活性位点之间的协同串联催化, 介观尺度上复合催化剂的定制与催化剂之间反应的配置, 以及宏观尺度上反应器级联催化的设计. 在微观尺度上, 强调了通过精准调控催化剂组分来优化电子转移、质子转移与中间体的传递, 以促进多碳产物的生成; 在介观尺度上, 探讨了串联电极结构对流体力学的影响; 在宏观尺度上, 着重讨论了级联反应器设计, 根据级联方式选择配置高效串联催化剂, 提高工业规模CO2电解反应的整体转化效率. 最后, 介绍了结合原位X射线吸收光谱、扫描隧道显微镜等先进表征技术与机器学习、理论计算的研究方法, 阐述了串联催化反应的微观机理, 预测不同反应路径的可行性, 并加速筛选与设计性能优异催化剂, 从而进一步提升T-ECR技术的效率.

综上, 本文从催化剂、催化反应和反应器的角度总结了T-ECR技术研究的最新进展, 通过深入理解串联催化反应的机制, 提出了多尺度催化剂设计与反应器优化的研究思路, 为解决T-ECR技术面临的挑战提供了潜在解决方案. T-ECR技术的进一步发展有望实现大规模CO2转化的商业化应用, 为社会可持续发展作出积极贡献.

关键词: 电化学CO2还原, 多碳产物, 串联设计, 电催化剂, 反应器

Abstract:

Electrochemical CO2 reduction (ECR) driven by intermittent renewable energy sources is an emerging technology to achieve net-zero CO2 emissions. Tandem electrochemical CO2 reduction (T-ECR), employs tandem catalysts with synergistic or complementary functions to efficiently convert CO2 into multi-carbon (C2+) products in a succession of reactions within single or sequentially coupled reactors. However, the lack of clear interpretation and systematic understanding of T-ECR mechanisms has resulted in suboptimal current outcomes. This review presents new perspectives and summarizes recent advancements in efficient T-ECR across various scales, including synergistic tandem catalysis at the microscopic scale, relay tandem catalysis at the mesoscopic scale, and tandem reactors at the macroscopic scale. We begin by outlining the principle of tandem catalysis, followed by discuss on tandem catalyst design, the electrode construction, and reactor configuration. Additionally, we address the challenges and prospects of tandem strategies, emphasizing the integration of machine learning, theoretical calculations, and advanced characterization techniques for developing industry-scale CO2 valorization.

Key words: Electrochemical CO2 reduction, Multi-carbon product, Tandem design, Electrocatalyst, Reactors