催化学报 ›› 2025, Vol. 72: 277-288.DOI: 10.1016/S1872-2067(25)64654-7

• 论文 • 上一篇    下一篇

浸渍离子液体于多孔Fe-N-C电催化剂以改善聚合物电解质燃料电池电极动力学与质量传输

李思明a,1, 孙恩样b,1, 魏鹏飞a, 赵微b, 裴随珠a, 陈颖a, 杨洁c, 陈绘丽a, 尹熙c,*(), 王旻b,*(), 李亚伟a,*()   

  1. a山西大学化学化工学院, 山西太原 030006
    b中国石油大学(华东)新能源学院, 山东青岛 266580
    c中国科学院煤炭化学研究所, 煤炭转化国家重点实验室, 山西太原 030001
  • 收稿日期:2025-01-24 接受日期:2025-02-10 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: yaweili@sxu.edu.cn (李亚伟),minwang@upc.edu.cn (王旻),xiyin@sxicc.ac.cn (尹熙).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22202124);国家自然科学基金(22208376);山西省科技创新团队专项资金(202304051001023);山西省重点研发计划(202302060301009);山西省国家留学基金委(2023-008);山西省国家留学基金委(2023-009);山东省自然科学基金(ZR2023LFG005);青岛新能源山东实验室开放项目(QNESL OP 202303)

Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells

Siming Lia,1, Enyang Sunb,1, Pengfei Weia, Wei Zhaob, Suizhu Peia, Ying Chena, Jie Yangc, Huili Chena, Xi Yinc,*(), Min Wangb,*(), Yawei Lia,*()   

  1. aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
    bCollege of New Energy, China University of Petroleum (East China), Qingdao 266580, Shandong, China
    cState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
  • Received:2025-01-24 Accepted:2025-02-10 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: yaweili@sxu.edu.cn (Y. Li), minwang@upc.edu.cn (M. Wang), xiyin@sxicc.ac.cn (X. Yin).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22202124);National Natural Science Foundation of China(22208376);special fund for Science and Technology Innovation Teams of Shanxi Province(202304051001023);Key Research and Development Program of Shanxi Province(202302060301009);Shanxi Scholarship Council of China(2023-008);Shanxi Scholarship Council of China(2023-009);Shandong Provincial Natural Science Foundation(ZR2023LFG005);Qingdao New Energy Shandong Laboratory Open Project(QNESL OP 202303)

摘要:

聚合物电解质膜燃料电池(PEMFC)作为高效清洁能源技术, 其大规模应用受限于铂基催化剂的高成本和稳定性问题. 过渡金属-氮共掺杂碳材料(M-N-C, 如Fe-N-C)因优异的催化活性被视为潜在替代品, 但其在酸性环境中氧还原反应(ORR)的缓慢动力学、副产物H2O2引发的金属溶出和碳腐蚀等问题, 严重阻碍了实际应用. 近年来, 离子液体(IL)因其高氧溶解度、质子传导性和化学稳定性, 被用于优化催化剂界面. 然而, 如何将IL高效引入多孔Fe-N-C内部以提升其整体性能仍具挑战. 本研究提出一种顺序沉积法, 将IL [BMIM][beti]均匀负载于Fe-N-C孔道内, 显著提升催化活性与稳定性.

本文通过两步顺序沉积法, 将IL阳离子[BMIM]+和阴离子[beti]-分步引入Fe-N-C孔道内, 形成均匀分布的IL薄膜. X射线光电子能谱、扫描透射电镜-能量散射谱及N2吸附-脱附分析表明, IL成功填充微孔并覆盖活性位点. 电化学测试结果表明, IL修饰的Fe-N-C/IL催化剂在ORR过程中H2O2产率显著降低, 电子转移数从3.57提升至3.86, 表明四电子路径在ORR中占主导. 经10000次加速耐久性测试, Fe-N-C/IL的过电位仅增加58 mV, 远低于未修饰Fe-N-C的102 mV; 电感耦合等离子体-质谱分析显示, Fe溶出量从7.37 ppb降至4.86 ppb, 证实IL通过抑制H2O2生成有效保护催化剂结构. 单电池测试中, Fe-N-C/IL在低湿度 (50% RH)下的电流密度较未修饰样品提升35% (H2/Air); 电化学阻抗谱表明, IL在低湿度下显著增强了催化层内部的质子传导. 通过极限电流进行的氧传输测试和分子动力学(MD)模拟表明, IL通过增强质子传导和降低氧气传输阻力, 优化电极三相界面. MD模拟进一步揭示IL使O2分子更密集分布于Fe-N-C表面, 其高氧溶解度与疏水性显著促进孔内气体扩散. 由此可见, IL显著推动Fe-N-C催化剂通过四电子路径进行ORR, 同时作为“屏障”抑制H2O2的生成, 从而阻止对活性位点的腐蚀, 并促进低湿度下的质子传导性能和活性位点反应物的可及性.

综上, 本研究通过创新性顺序沉积策略, 成功构建了兼具高活性与稳定性的Fe-N-C/IL复合催化剂, 为PEMFC中非贵金属催化剂的实用化提供了重要参考. 该工作不仅推动了非铂催化剂在燃料电池中的应用, 也为其他能源转换技术的界面工程提供了新思路.

关键词: 燃料电池, 电催化, 氧还原反应, 离子液体, 非贵金属催化剂

Abstract:

Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells (PEMFCs). The transition metal and nitrogen co-doped carbon electrocatalyst (M-N-C) is considered an effective alternative to precious metal catalysts. However, its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs. This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid (IL), which exhibits improved performance at both half-cell and membrane electrode assembly scales. The presence of IL significantly inhibits H2O2 production, preferentially promoting the 4e- O2 reduction reaction, resulting in improved electrocatalytic activity and stability. Additionally, the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses. This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies.

Key words: Fuel cell, Electrocatalysis, Oxygen reduction reaction, Ionic liquid, Non-platinum group metal