催化学报 ›› 2025, Vol. 72: 289-300.DOI: 10.1016/S1872-2067(24)60278-0
任宪轩a, Rozemarijn D. E. Krösschella, 门卓武b, 王鹏a,b,*(), Ivo A. W. Filota,*(
), Emiel J. M. Hensena,*(
)
收稿日期:
2024-12-05
接受日期:
2025-02-03
出版日期:
2025-05-18
发布日期:
2025-05-20
通讯作者:
*电子信箱: p.wang@tue.nl (王鹏),i.a.w.filot@tue.nl (I. Filot),e.j.m.hensen@tue.nl (E. Hensen).
Xianxuan Rena, Rozemarijn D. E. Krösschella, Zhuowu Menb, Peng Wanga,b,*(), Ivo A. W. Filota,*(
), Emiel J. M. Hensena,*(
)
Received:
2024-12-05
Accepted:
2025-02-03
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: p.wang@tue.nl (P. Wang), i.a.w.filot@tue.nl (I. Filot), e.j.m.hensen@tue.nl (E. Hensen).
摘要: 钾(K)作为助剂可以提高铁基催化剂在逆水煤气变换(rWGS)反应中的催化性能, 这一特性与CO2-H2混合物的费托(FT)合成过程密切相关. 为了阐明K助剂的作用机理, 我们结合密度泛函理论(DFT)计算和微观动力学建模, 对Hägg碳化物(χ-Fe5C2)的两个代表性表面终端, 即(010)和(510)进行了研究. 结果表明, K2O的存在增强了CO2和H2在Hägg碳化物上的吸附能力, 并通过提高靠近助剂氧化物的Fe原子的电子密度来促进吸附CO2的C-O键解离. 此外, 表面Fe原子电子密度的的增加导致了与吸附CO2的键合轨道的电子排斥效应增强. 微观动力学模拟预测, K2O在CO2-FT合成过程中提高了CO2转化率. K2O还增强了CO的吸附和解离, 促进了甲烷的形成, 甲烷在这里被用作CO2-FT合成过程中碳氢化合物形成的典型代表. 在CO2-FT反应体系中, CO解离和通过H2O去除O作为速率控制步骤相互竞争.
任宪轩, Rozemarijn D. E. Krösschell, 门卓武, 王鹏, Ivo A. W. Filot, Emiel J. M. Hensen. K对Hägg碳化物逆水煤气变换反应作用的理论研究[J]. 催化学报, 2025, 72: 289-300.
Xianxuan Ren, Rozemarijn D. E. Krösschell, Zhuowu Men, Peng Wang, Ivo A. W. Filot, Emiel J. M. Hensen. A theoretical study of the role of K on the reverse water-gas shift reaction on Hägg carbide[J]. Chinese Journal of Catalysis, 2025, 72: 289-300.
Fig. 1. Top and side view of the (010) (a) and the (510) (b) surfaces models of Ha?gg carbide. The solid lines correspond to the top and bottom edges of the periodic supercell. The FR and P5 sites are indicated by dotted white lines.
Surface | Elementary step | Unpromoted | K2O Promoted | |||||
---|---|---|---|---|---|---|---|---|
Ef (kJ/mol) | Eb (kJ/mol) | Erxn (kJ/mol) | Ef (kJ/mol) | Eb (kJ/mol) | Erxn (kJ/mol) | ΔEf (kJ/mol) | ||
(010) | CO2* + * → CO* + O* | 56 | 142 | -86 | 45 | 146 | -101 | -11 |
(010) | CO2* + H* → HCOO* + * | 103 | 23 | 80 | 63 | 9 | 54 | -40 |
(010) | CO2* + H* → COOH* + * | 122 | 44 | 78 | 118 | 32 | 86 | -4 |
(010) | HCOO* + * → HCO* + O* | 28 | 136 | -108 | 64 | 133 | -69 | 36 |
(010) | COOH* + * → CO* + OH* | 34 | 115 | -81 | 36 | 168 | -132 | 2 |
(510) | CO2* + * → CO* + O* | 33 | 171 | -138 | 14 | 156 | -142 | -19 |
(510) | CO2* + H* → HCOO* + * | 79 | 25 | 54 | 71 | 3 | 68 | -8 |
(510) | CO2* + H* → COOH* + * | 57 | 4 | 53 | 115 | 61 | 54 | 58 |
(510) | HCOO* + * → HCO* + O* | 55 | 115 | -60 | 26 | 113 | -87 | -29 |
(510) | COOH* + * → CO* + OH* | 68 | 171 | -103 | 70 | 153 | -83 | 2 |
Table 1 Forward reaction barriers (Ef), backward reaction barriers (Eb) and reaction energies (Erxn) of CO dissociation via direct and H-assisted pathways, along with the difference in forward barrier (ΔEf) between the unpromoted and promoted surfaces for the (010) and (510) of χ-Fe5C2.
Surface | Elementary step | Unpromoted | K2O Promoted | |||||
---|---|---|---|---|---|---|---|---|
Ef (kJ/mol) | Eb (kJ/mol) | Erxn (kJ/mol) | Ef (kJ/mol) | Eb (kJ/mol) | Erxn (kJ/mol) | ΔEf (kJ/mol) | ||
(010) | CO2* + * → CO* + O* | 56 | 142 | -86 | 45 | 146 | -101 | -11 |
(010) | CO2* + H* → HCOO* + * | 103 | 23 | 80 | 63 | 9 | 54 | -40 |
(010) | CO2* + H* → COOH* + * | 122 | 44 | 78 | 118 | 32 | 86 | -4 |
(010) | HCOO* + * → HCO* + O* | 28 | 136 | -108 | 64 | 133 | -69 | 36 |
(010) | COOH* + * → CO* + OH* | 34 | 115 | -81 | 36 | 168 | -132 | 2 |
(510) | CO2* + * → CO* + O* | 33 | 171 | -138 | 14 | 156 | -142 | -19 |
(510) | CO2* + H* → HCOO* + * | 79 | 25 | 54 | 71 | 3 | 68 | -8 |
(510) | CO2* + H* → COOH* + * | 57 | 4 | 53 | 115 | 61 | 54 | 58 |
(510) | HCOO* + * → HCO* + O* | 55 | 115 | -60 | 26 | 113 | -87 | -29 |
(510) | COOH* + * → CO* + OH* | 68 | 171 | -103 | 70 | 153 | -83 | 2 |
Fig. 4. DOS of C-O bond of CO2 in the gas phase (a) and on the (010) surface (b), and on the K2O-promoted (010) surface (c) of χ-Fe5C2. COHP of the C-O bonds in CO2 in the gas phase (d), on the (010) surface (e), and on the K2O-promoted (010) surface (f) of χ-Fe5C2.
Fig. 5. iDOS (a,b) and iCOHP (c,d) of C-O bond of CO2 in the gas phase, on the unpromoted surfaces; and the K2O-promoted surfaces. The results for the unpromoted and K2O-promoted surfaces are indicated by hashed and dotted bars, respectively.
Fig. 6. Reaction energy diagrams of H2O formation through O* hydrogenation followed by OH* hydrogenation or OH* disproportionation pathways on the (510) (a) and K2O-promoted (510) (b) surfaces of χ-Fe5C2.
Fig. 8. Microkinetics simulations on the unpromoted and K2O-promoted (510) surfaces of χ-Fe5C2: CO2 conversion rate (a) and CO and CH4 rates (b) as a function of temperature (p = 20 bar, H2/CO ratio = 4).
Fig. 9. Microkinetics simulations on the (left) unpromoted and (right) K2O-promoted (510) surfaces of χ-Fe5C2: selectivity (a,b) and coverage (c,d) as a function of temperature (p = 20 bar, H2/CO ratio = 4).
Fig. 10. Microkinetics simulations on the (left) unpromoted and (right) K2O-promoted (510) surfaces of χ-Fe5C2: degree of rate control (a,b) and reaction order and apparent activation energy (c,d) as a function of temperature (p = 20 bar, H2/CO ratio = 4).
|
[1] | 焦自浩, 张成翼, 刘亚, 郭烈锦, 王子运. 基于图神经网络的高性能二氧化碳还原高熵合金催化剂预测[J]. 催化学报, 2025, 71(4): 197-207. |
[2] | 陈哲, 王涛. 电化学CO还原中低CO覆盖度下的C−C偶联机制: 反应物种最稳定吸附构型随电位的动态变化[J]. 催化学报, 2025, 69(2): 193-202. |
[3] | 刘京, 马贤迪, 卢政汉, 申东元, 赵阿雅, 韩晸宇, 龙剑平, 周震, 焦梦改, 李国承, 赵恩爱. 靶向构筑高性能单原子铂基氢析出反应电催化剂[J]. 催化学报, 2025, 69(2): 259-270. |
[4] | 汤雨晴, 陈彦君, Aqsa Abid, 孟子淳, 孙晓颖, 李波, 赵震. 氧化锆催化剂在丙烷催化脱氢中优异性能的再探索: 氧空位的两面性[J]. 催化学报, 2025, 68(1): 272-281. |
[5] | 刘彩霞, 黄朝俊, 范柏余, 张岩, 房莉静, 王雨禾, 刘庆岭, 王卫超, 陈延国, 张亚伟, 刘建成, 董芳, 张子印. 氯化氢对锑铈基催化剂在NH3-SCR反应中的促进作用及其机理研究[J]. 催化学报, 2025, 68(1): 376-385. |
[6] | 龚能, 邓权政, 王雨娇, 王自陶, 韩璐, 吴鹏, 车顺爱. MFI介孔分子筛限域封装Co纳米颗粒选择性催化合成气转化为重质液态烃燃料[J]. 催化学报, 2025, 68(1): 246-258. |
[7] | 张棋祺, 苗慧, 王俊, 孙涛, 刘恩周. In2.77S4/K+掺杂g-C3N4自组装S型异质结光催化H2O和O2合成H2O2[J]. 催化学报, 2024, 63(8): 176-189. |
[8] | 穆楠, 薄婷婷, 胡玉高, 徐瑞欣, 刘彦昱, 周伟. 基于铁电In2Se3极化切换的N2还原单原子催化剂[J]. 催化学报, 2024, 63(8): 244-257. |
[9] | 陈昕煜, 赵聪聪, 任静, 李波, 刘倩倩, 李葳, 杨帆, 陆思琦, 赵宇飞, 颜力楷, 臧宏瑛. 富含氧空位的由多金属氧簇辅助的银基异质结用于高效电催化固氮[J]. 催化学报, 2024, 62(7): 209-218. |
[10] | 刘洁宇, 郭海强, 熊钰林, 陈星, 于一夫, 王长洪. 基于DFT和机器学习的Pt单原子合金电催化剂的理性设计: 应用于NO至NH3的转化[J]. 催化学报, 2024, 62(7): 243-253. |
[11] | 杜仕文, 章福祥. 密度泛函理论在光催化中的普遍应用[J]. 催化学报, 2024, 61(6): 1-36. |
[12] | Adel Al-Salihy, 梁策, Abdulwahab Salah, Abdel-Basit Al-Odayni, 卢子昂, 陈孟新, 刘倩倩, 徐平. 用于提升全水解性能的超低含量Ru掺杂NiMoO4@Ni3(PO4)2核壳纳米结构[J]. 催化学报, 2024, 60(5): 360-375. |
[13] | Dae-Hwan Lim, Aadil Bathla, Hassan Anwer, Sherif A. Younis, Danil W. Boukhvalov, Ki-Hyun Kim. 氮掺杂对环境空气中TiO2纳米催化剂抗甲醛光催化矿化的影响[J]. 催化学报, 2024, 59(4): 303-323. |
[14] | 吴德贵, 熊孝根, 赵中栋, 宋树芹, 丁朝斌. 揭示配体拓扑结构对Fe-Nx-C单原子催化剂表面氧还原反应中间体吸附的影响[J]. 催化学报, 2024, 59(4): 214-224. |
[15] | 潘劲康, 张艾彩珺, 张莉华, 董鹏玉. 由质子化D-A型聚合物和MoS2构建S型异质结实现高效光催化析氢[J]. 催化学报, 2024, 58(3): 180-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||