催化学报 ›› 2025, Vol. 70: 299-310.DOI: 10.1016/S1872-2067(24)60224-X

• 论文 • 上一篇    下一篇

Er掺杂调控CoP活性位点的电子结构促进亚硝酸盐电还原合成氨

赵东林a,1, 周科宇a,1, 詹丽a, 樊光银a,*(), 龙艳a,*(), 宋术岩b   

  1. a四川师范大学化学与材料科学学院, 四川成都 610068
    b中国科学院长春应用化学研究所, 稀土资源利用国家重点实验室, 吉林长春 130022
  • 收稿日期:2024-11-18 接受日期:2024-12-10 出版日期:2025-03-18 发布日期:2025-03-20
  • 通讯作者: * 电子信箱: fanguangyin@sicnu.edu.cn (樊光银),longyan@sicnu.edu.cn (龙艳).
  • 作者简介:1共同第一作者.

Modulation of the electronic structure of CoP active sites by Er-doping for nitrite reduction for ammonia electrosynthesis

Donglin Zhaoa,1, Keyu Zhoua,1, Li Zhana, Guangyin Fana,*(), Yan Longa,*(), Shuyan Songb   

  1. aCollege of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
    bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
  • Received:2024-11-18 Accepted:2024-12-10 Online:2025-03-18 Published:2025-03-20
  • Contact: * E-mail: fanguangyin@sicnu.edu.cn (G. Fan),longyan@sicnu.edu.cn (Y. Long).
  • About author:1 Contributed equally to this work.

摘要:

氨(NH3)作为一种重要的无机化工原料, 广泛应用于农业、工业和储能等领域. 目前, 工业上NH3的生产方法是传统的哈伯-博施工艺.

该工艺反应条件苛刻, 能量耗损高, 并且会同时产生大量的温室气体, 给生态环境带来极大的危害. 电催化亚硝酸盐还原(eNO2RR)合成NH3是一种高效、可控且可持续的NH3合成替代途径, 有望突破传统NH3合成工艺的限制. 此外, 废水中广泛存在的亚硝酸盐(NO2)是一种常见的致癌物质, 严重危害环境和人类健康. 然而, 电催化NO2还原合成NH3是一个六电子转移过程, 可能产生多种含氮中间产物, 从而影响产物的选择性.

因此, 为了解决能源和环境问题, 合理构建简单、稳定且高效的电催化剂至关重要. 这不仅能实现NH3的绿色合成, 还能去除废水中有毒的NO2. 本文开发了一种独特而有效的以稀土金属元素铒(Er)为介导的价电子和表面微环境调控方法. 带有孤对电子的含氮有机配体与带正电荷的Er和金属钴(Co)离子之间的强配位, 确保了通过热解合成的样品中Er和Co位点的强烈耦合. 随后, 通过磷化反应在钛网基底上合成了Er掺杂的磷化钴复合的碳氮纳米片(Er-CoP@NC/TM)催化剂. 值得注意的是, Er的引入调控了Co位点的价电子分布, 使Er-CoP@NC/TM催化剂表现出较好的电催化合成NH3性能. 在工作电压为−0.8 V vs. RHE时, Er-CoP@NC/TM催化剂获得的最大氨产率达到2087.60 ± 17.10 µmol h-1 cm-2; 在工作电压为−0.4 V vs. RHE时, Er-CoP@NC/TM催化剂的最大法拉第效率为97.08 ± 2.22%, 其催化活性远大于原始的磷化钴复合的碳氮纳米片(CoP@NC/TM)催化剂. 此外, Er-CoP@NC/TM催化剂在较宽的NO2浓度(0.05-0.1 mol L-1)和pH值(4-13)范围内也表现出卓越的电催化合成NH3性能. 同时, Er-CoP@NC/TM催化剂在模拟废水环境中表现出较强的抗阴离子干扰能力和较长的循环寿命. 此外, 淬灭实验和电子顺磁共振测试结果表明, 活性氢的直接电催化还原和电子转移对于电催化NO2合成NH3至关重要. 实验和理论计算进一步表明, Er的引入调控了Er-CoP@NC/TM催化剂中CoP的电子结构, 从而调节了中间产物的吸附行为以及eNO2-RR过程中的决速步骤, 降低了反应能垒, 进一步提高了Er-CoP@NC/TM催化剂合成NH3的性能.

综上所述, 本研究中通过Er掺杂显著提高了磷化钴复合的碳氮纳米片催化剂的电催化合成NH3性能, 为修复NO2废水和回收有价值的NH3提供了一种新颖实用的解决方案. 同时, 为稀土元素在催化剂的制备和应用方向提供了新思路.

关键词: 电催化, 亚硝酸盐还原, 氨生产, 磷化钴, 铒掺杂

Abstract:

The electrochemical conversion of toxic nitrite (NO2-) is a promising approach for the simultaneous removal of nitrogen contaminants and synthesis of ammonia (NH3). In this study, we present the Er-doping-induced electronic modulation of CoP integrated with nitrogen-doped carbon (CN) nanosheets supported on a titanium mesh (Er-CoP@NC/TM) for the electrocatalytic NO2- reduction reaction (eNO2-RR) for NH3 synthesis. The catalyst demonstrates a high Faraday efficiency of 97.08 ± 2.22% and a high yield of 2087.60 ± 17.10 µmol h-1 cm-2 for NH3 production. Characterization and theoretical calculations revealed that Er-doping facilitated the electronic modulation of CoP in Er-CoP@NC/TM, which regulated the adsorption behaviors of intermediates and was the rate-limiting step for the eNO2-RR, thereby enhancing the electrocatalytic performance. Quenching experiments and electron paramagnetic resonance tests suggest that both direct electrocatalytic reduction by active hydrogen and electron transfer are critical for the eNO2-RR for NH3 synthesis. Furthermore, Er-CoP@NC/TM exhibited high performance across a wide range of NO2- concentrations (0.05-0.1 mol L-1) and pH values (4-13). In addition, the catalyst demonstrated strong resistance to anions and a long cycle life in simulated wastewater environments. This study offers a powerful approach for the remediation of NO2- wastewater and recovery of valuable inorganic compounds.

Key words: Electrocatalysis, Nitrite reduction, Ammonia production, Cobalt phosphide, Er-doping