催化学报 ›› 2025, Vol. 76: 221-229.DOI: 10.1016/S1872-2067(25)64734-6

• 论文 • 上一篇    下一篇

面向高效乙炔加氢制乙烯的二硫化钨限域金属原子催化剂理论预测

刘欢a, 秉琦明a, 于良a,b,*(), 邓德会a,b,*()   

  1. a中国科学院大连化学物理研究所, 能源材料化学协同创新中心, 催化基础国家重点实验室, 辽宁大连 116023
    b中国科学院大学, 北京 100049
  • 收稿日期:2025-03-23 接受日期:2025-05-07 出版日期:2025-09-18 发布日期:2025-09-10
  • 通讯作者: 电子信箱: lyu@dicp.ac.cn (于良),dhdeng@dicp.ac.cn (邓德会).
  • 基金资助:
    国家重点研发计划(2022YFA1504800);国家重点研发计划(2024YFA1510100);国家自然科学基金(22225204);国家自然科学基金(22472169);国家自然科学基金(22272170);中国科学院-发展中国家科学院(CAS-TWAS)

Theoretical prediction of WS2-confined metal atoms for highly efficient acetylene hydrogenation to ethylene

Kelechi Uwakwea,b, Huan Liua, Qiming Binga, Liang Yua,b,*(), Dehui Denga,b,*()   

  1. aState Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-03-23 Accepted:2025-05-07 Online:2025-09-18 Published:2025-09-10
  • Contact: E-mail: lyu@dicp.ac.cn (L. Yu),dhdeng@dicp.ac.cn (D. Deng).
  • Supported by:
    National Key R&D Program of China(2022YFA1504800);National Key R&D Program of China(2024YFA1510100);National Natural Science Foundation of China(22225204);National Natural Science Foundation of China(22472169);National Natural Science Foundation of China(22272170);and the CAS-TWAS Presidents’ Fellowship.

摘要:

乙炔选择加氢制乙烯(AHE)是煤化工替代石油路线生产乙烯的重要途径. 设计具有高活性和高选择性的非贵金属基催化剂是实现高效AHE的关键. 二维过渡金属硫化物(TMDs)因其三原子层结构特征、高度可调的电子结构和低成本等优势而备受关注, 其硫空位限域低配位金属位点在催化加氢反应中表现出优异的活性和选择性. 二维硫化钨(WS2)在催化AHE反应中展现出了重要潜力. 精确调控二维WS2的原子和电子结构, 并探究其硫空位限域金属位点的催化活性和选择性, 对于设计和开发高效、低成本WS2基AHE催化剂具有重要指导意义.

本研究基于密度泛函理论计算, 通过构建27种过渡金属原子掺杂二维WS2结构以替代面内硫空位处的W原子(标记为M@WS2-Sv), 发现硫空位限域的Cu位点(Cu@WS2-Sv)在AHE反应中展现出优于其它金属位点的催化活性、选择性和稳定性. 以乙炔吸附自由能(ΔGC2H2*)为活性描述符, 揭示了AHE反应的两个关键速率决定基元步骤为C2H2与H2的共吸附和C2H3*加氢生成C2H4*. 基于此, 建立了火山型活性趋势, 表明Cu@WS2-Sv为非贵金属基M@WS2-Sv催化剂中的最优选择. 通过计算Cu@WS2-Sv硫空位限域Cu位点上乙炔加氢完整反应路径, 结果显示C2H3*加氢生成C2H4*是乙烯形成的速率控制步骤, 其总能垒为1.09 eV; 同时, C2H4的脱附相比其过度加氢生成乙烷的路径具有更优的反应动力学. 优先生成C2H4的总能垒相对较低, 表明Cu@WS2-Sv有望在温和条件下实现高活性、高选择性AHE反应. 为了深入理解M@WS2-Sv催化剂的本征活性, 利用独立筛选与稀疏算子(SISSO)方法构建了ΔGC2H2*与掺杂原子的物理化学属性的机器学习关联模型, 发现掺杂金属原子的d电子数和电负性是调控AHE活性的关键因素. 其中, 掺杂金属原子的d电子数是影响催化活性的主要因素, 与催化活性存在正相关; 而d电子数相同时, 电负性的变化会进一步影响电荷转移和催化活性.

综上所述, 本研究为设计和开发乙炔选择性加氢制乙烯的高效催化剂提供了理论指导, 并为二维过渡金属硫化物催化剂的活性与选择性调控提供了新思路.

关键词: 第一性原理计算, 乙炔加氢, 二维硫化钨, 硫空位限域, 电子结构调控

Abstract:

Precise regulation of atomic and electronic structures of two-dimensional tungsten disulfide (WS2) is significant for rational design of high-performance and low-cost catalyst for acetylene hydrogenation to ethylene (AHE), yet remains a major challenge. Herein, we report that by substituting a W atom of WS2 with a series of transition metal atoms, sulfur vacancy-confined Cu in the WS2 basal plane (Cu@WS2-Sv) is theoretically screened as a superior non-noble metal-based catalyst with higher activity, selectivity, and stability for the AHE than other candidates. The co-adsorption of C2H2 and H2 and hydrogenation of C2H3* to C2H4* are revealed as the key steps establishing a volcano-like activity trend among the candidates, which present Cu@WS2-Sv as the optimum catalyst combined with molecular dynamics and reaction kinetics analyses. The kinetically more favorable desorption of C2H4 than the over hydrogenation path validates a higher selectivity toward C2H4 over C2H6. Furthermore, a machine-learning model reveals the significant effect of d-electron number and electronegativity of the metal heteroatoms in modulating the AHE activity.

Key words: First-principles calculation, Acetylene hydrogenation, Tungsten disulfide, Sulfur vacancy confinement, Electronic structure modulation