催化学报 ›› 2025, Vol. 75: 21-33.DOI: 10.1016/S1872-2067(25)64736-X

• 论文 • 上一篇    下一篇

利用缺陷诱导效应构筑高分散Pt/Co3O4催化剂用于高效丙烷完全氧化

冯超a,c,d,*(), 熊高燕c, 陈冲c, 林燕b,*(), 王忠d, 卢玉坤c, 刘芳c, 李学兵d, 柳云骐c, 张润铎e,*(), 潘原c,*()   

  1. a山东科技大学化学与生物工程学院, 山东青岛 266590
    b山东科技大学储能技术学院, 山东青岛 266590
    c中国石油大学(华东)化学化工学院, 重质油国家重点实验室, 山东青岛 266580
    d中国科学院青岛生物能源与过程研究所, 生物燃料重点实验室, 山东青岛 266101
    e北京化工大学化工资源有效利用国家重点实验室, 能源环境催化北京市重点实验室, 北京 100029
  • 收稿日期:2025-03-10 接受日期:2025-05-10 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: fengchao@sdust.edu.cn (冯超), linyan09@sdust.edu.cn (林燕), zhangrd@mail.buct.edu.cn (张润铎), panyuan@upc.edu.cn (潘原).
  • 基金资助:
    泰山青年基金(tsqn201909065);国家自然科学基金(22108306);国家自然科学基金(21878334);国家自然科学基金(22478432);国家自然科学基金(22109090);国家自然科学基金(22178388);国家自然科学基金(22406191);山东省自然科学基金(ZR2024JQ004);山东省自然科学基金(ZR2021YQ15);山东省自然科学基金(ZR2023MB032);青岛新能源山东实验室开放基金(QNESL OP202310);青岛市自然科学基金(23-2-1-14-zyyd-jch)

Highly dispersed Pt/Co3O4 catalyst constructed by vacancy defect inductive effect for enhanced catalytic propane total oxidation

Feng Chaoa,c,d,*(), Xiong Gaoyanc, Chen Chongc, Lin Yanb,*(), Wang Zhongd, Lu Yukunc, Liu Fangc, Li Xuebingd, Liu Yunqic, Zhang Runduoe,*(), Pan Yuanc,*()   

  1. aCollege of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
    bCollege of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
    cState Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
    dKey Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
    eState Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2025-03-10 Accepted:2025-05-10 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: fengchao@sdust.edu.cn (C. Feng),linyan09@sdust.edu.cn (Y. Lin),zhangrd@mail.buct.edu.cn (R. Zhang), panyuan@upc.edu.cn (Y. Pan).
  • Supported by:
    Taishan Scholars Program of Shandong Province(tsqn201909065);National Natural Science Foundation of China(22108306);National Natural Science Foundation of China(21878334);National Natural Science Foundation of China(22478432);National Natural Science Foundation of China(22109090);National Natural Science Foundation of China(22178388);National Natural Science Foundation of China(22406191);Shandong Provincial Natural Science Foundation(ZR2024JQ004);Shandong Provincial Natural Science Foundation(ZR2021YQ15);Shandong Provincial Natural Science Foundation(ZR2023MB032);Qingdao New Energy Shandong Laboratory Open Project(QNESL OP202310);Qingdao Natural Science Foundation(23-2-1-14-zyyd-jch)

摘要:

挥发性有机污染物(VOCs)是典型的化工大气污染物, 其中以丙烷为代表的短链烷烃, 是重要环境污染物臭氧的主要前驱体. 催化氧化技术是应用最为广泛的VOCs消除技术, 其关键在于催化剂的设计. 贵金属Pt具有良好的低温催化VOCs氧化活性, 但是高昂的价格、资源的稀缺以及颗粒易团聚的缺点限制了其在工业中的应用. 过渡金属氧化物中的Co3O4, 具有丰富的活性中心、易于构造缺陷的尖晶石结构和良好的氧化还原性能, 被认为是具有良好潜力的催化剂载体. 因此, 如何提高Pt在Co3O4表面的分散度, 调节Pt和Co3O4的界面作用, 并深入探究Pt-Co3O4双活性组分体系与催化VOCs氧化活性的构效关联和催化机制, 对于突破VOCs低温催化瓶颈具有重要意义.

本文通过还原-锚定策略制备了Pt/VO-Co3O4催化剂, 得益于Co3O4表面缺陷对Pt的缺陷诱导效应, Pt在VO-Co3O4表面实现了高度分散. X射线衍射、高角环形暗场扫描透射电镜及X射线光电子能谱结果表明, Pt/VO-Co3O4催化剂中的Pt进入Co3O4表面晶格中, 形成高度分散的小尺寸Pt颗粒结构. 当Pt负载量为0.6 wt%时, Pt/VO-Co3O4表现出卓越的低温催化丙烷活性. 0.6Pt/VO-Co3O4在160 oC下催化丙烷完全氧化的反应速率为32.2×10-5 mol·gcat-1·s-1, 分别是0.6Pt/Co3O4 (17.6×10-5 mol·gcat-1·s-1)和Co3O4 (6.7×10-5 mol·gcat-1·s-1)的两倍和四倍. 此外, 0.6Pt/VO-Co3O4表现出极好的抗水性和高温稳定性、循环稳定性. X射线吸收谱和H2程序升温还原结果表明, 相较于0.6Pt/Co3O4, 0.6Pt/VO-Co3O4中存在更强的Pt和Co3O4的金属-载体相互作用, Pt呈现出更低的价态, 从而增强了低温下的还原性能. 电子顺磁共振、电子自旋共振、拉曼光谱和O2程序升温氧化结果则证实了0.6Pt/VO-Co3O4表面缺陷锚定Pt重构后, 表面Pt-O键和Co-O键的差异显著增强了表面晶格氧的活性, 更易于生成活性氧物种, 进而提升丙烷的氧化活性. 为了探究Pt和Co3O4的协同机制, 通过调控丙烷与氧气分压测定反应速率表达式, 发现氧气的活化对反应更为关键. 原位红外表征结果表明, 表面缺陷略微增强了低温下丙烷脱氢过程, 促进了酮基和酯基物种的生成; 而Pt的负载极大的增强了活性氧物种深度活化酯基断裂能力. 结合密度泛函理论计算, 本文提出了Pt/VO-Co3O4表面缺陷对丙烷催化完全氧化的增强机制: 表面缺陷显著增强了丙烷吸附; 高分散的Pt呈现接近Co3O4中Co的配位状态, 相较于Pt/Co3O4表面的PtO2具有更多的电子, 这赋予其更强的氧气解离能和更低的丙烷氧化解离能垒, 从而增强了低温催化丙烷完全氧化活性.

综上, 本工作通过在Co3O4表面构筑缺陷并利用缺陷诱导效应提升Pt物种在表面的分散度, 成功开发了具有优异低温催化丙烷氧化活性和稳定性的催化剂. 并揭示了Pt和Co3O4在丙烷催化氧化反应中的构效关联和协同机制, 为设计和合成高效双活性组分催化剂提供了新思路.

关键词: 丙烷完全氧化, Pt/Co3O4, 氧空位, 缺陷诱导效应, 协同催化

Abstract:

Directional design of efficient catalysts for volatile organic compounds degradation remains a complex, yet effective and challenging process. Herein, oxygen-rich vacancy Co3O4-anchored Pt catalysts were prepared through atom-trapping strategy and relevant vacancy defect inductive effect was proposed. The 0.6Pt/VO-Co3O4 catalyst presented a reaction rate value of 32.2×10-5 mol·gcat-1·s-1 at 160 °C for catalytic propane total oxidation, which was nearly 5 times the reaction rate of Co3O4 (6.7×10-5 mol·gcat-1·s-1). Also, it exhibited excellent water-resistance and catalytic stability. The Pt atoms were stabilized on the Co3O4 surface by vacancy defects to improve dispersion. Meanwhile, the vacancy defect inductive effect induced stronger electron interaction between Pt and Co3O4 on the surface, thus promote the redox ability at low-temperature. The mobility and oxygen-activating ability of surface lattice oxygen were also strengthened by the vacancy defect inductive effect. This facilitated the generation of more surface-active oxygen species for the cleavage of C-H bond and the deep oxidation of intermediate species. Overall, this study proposed a novel concept the fabrication of highly efficient catalysts for the purpose of catalytic oxidation.

Key words: Propane total oxidation, Pt/Co3O4, Oxygen vacancy, Defect inductive effect, Synergetic catalysis