催化学报 ›› 2025, Vol. 75: 9-20.DOI: 10.1016/S1872-2067(25)64743-7

• 论文 • 上一篇    下一篇

基于富氧空位MgO/Ni@NiAlO界面工程实现低温无积碳甲烷干重整

王秋月a, 杨晨愉a, 朱升干b, 张元森a, 王轩a, 李永婷a, 丁维平a,*(), 郭学锋a,c,d,*()   

  1. a南京大学化学化工学院, 介观化学教育部重点实验室, 江苏南京 210023
    b浙江省天正设计工程有限公司, 浙江杭州 310038
    c南京大学扬州化学化工研究院, 江苏扬州 211900
    d南京大学江苏省机动车尾气污染控制重点实验室, 江苏南京 210023
  • 收稿日期:2025-02-18 接受日期:2025-04-18 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: guoxf@nju.edu.cn (郭学锋), dingwp@nju.edu.cn (丁维平).
  • 基金资助:
    国家重点研发项目(2021YFA1502804);国家自然科学基金(22172073);国家自然科学基金(21773112);国家自然科学基金(21173119);国家自然科学基金(21273109);江苏省重点研发项目(BE2022611);江苏省自然科学基金(BK20221286)

Interface engineering of oxygen-vacancy-rich MgO/Ni@NiAlO enables low-temperature coke-free methane dry reforming

Wang Qiuyuea, Yang Chenyua, Zhu Shengganb, Zhang Yuansena, Wang Xuana, Li Yongtinga, Ding Weipinga,*(), Guo Xuefenga,c,d,*()   

  1. aKey Laboratory of Mesoscopic Chemistry MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
    bZhejiang Titan Design & Engineering Co., Ltd, Hangzhou 310038, Zhejiang, China
    cNanjing University-Yangzhou Institute of Chemistry and Chemical Engineering, Yangzhou 211900, Jiangsu, China
    dJiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, Jiangsu, China
  • Received:2025-02-18 Accepted:2025-04-18 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: guoxf@nju.edu.cn (X. Guo), dingwp@nju.edu.cn (W. Ding).
  • Supported by:
    National Key Technology Research and Development Program of China(2021YFA1502804);National Science Foundation of China(22172073);National Science Foundation of China(21773112);National Science Foundation of China(21173119);National Science Foundation of China(21273109);Jiangsu Provincial Key Research and Development Program(BE2022611);Natural Science Foundation of Jiangsu Province(BK20221286)

摘要:

在过去的几十年里, 甲烷干重整(DRM)反应能将典型的温室气体甲烷(CH4)和二氧化碳(CO2)转化为合成气(H2和CO), 以生产高附加值化学品和燃料而备受关注. 镍基DRM催化剂因高活性、低成本而成为了研究的焦点, 但仍面临烧结和积碳的挑战. 近年来研究表明, 碱土金属对催化剂改性或构筑丰富的氧空位(Ov)可以增加CO2的活化能力, 缓解催化剂的积碳. 我们前期开发的包围型结构催化剂能有效抑制镍颗粒烧结. 然而, 仅结构限域无法解决积碳问题, 单一的碱改性难以抑制烧结. 因此, 将包围型结构(具有抗烧结特性)和碱性助剂(提供碱性环境和氧空位以吸附和活化CO2)相结合, 可能实现镍基催化剂的高稳定性和抗积碳性能是本文的主要研究思路.

本文采用界面工程策略, 以Ni(OH)2纳米片衍生的包围型NiO@NiAlO结构作为前驱体, 通过湿浸渍法(WI)、球磨法(G)、初湿浸渍法(IWI)将MgO引入催化剂核和/或壳的界面进行改性. 所获得0.8MgOWI/Ni@NiAlO催化剂(湿浸渍法), 在600 °C反应温度下, CH4的反应速率为’177 mmol gNi-1 min-1, CH4转化率为’50%, CO2转化率为’60%, 接近DRM反应的平衡转化率. 值得注意的是, 在50 h的稳定性测试中未观察到积碳或镍颗粒烧结现象, 优于在相似反应条件下已报道绝大多数催化剂. 与此形成鲜明的对比, 其他掺镁催化剂(MgO改性外壳或内核)和未修饰MgO的催化剂在10 h内由于积碳或镍颗粒烧结而失活. 相关表征结果证明, 湿浸渍法(0.8MgOWI/Ni@NiAlO)将MgO引入到NiO@NiAlO前驱体的外壳和内核, 经煅烧还原处理后, NiO壳形成了Ni/MgNiO2界面, NiAlO外壳上由于部分Al3+离子被Mg2+取代形成了丰富氧空位(Ov), 这些结构特征显著增强了催化剂的抗烧结和抗积碳能力, 进而提升了催化剂的活性和稳定性. 相比之下, 在0.8MgOG/Ni@NiAlO(球磨法)催化剂上, MgO主要引入到NiAlO外壳, 这只增加了氧空位的数量(防止积碳), 但未形成Ni/MgNiO2界面, 导致了镍颗粒烧结(6.6 vs. 50.2 nm). 相反, 在0.8MgOIWI/Ni@NiAlO(初始浸渍法)催化剂中, MgO主要引入到NiO的内核, 形成了Ni/MgNiO2界面(抑制了Ni颗粒的烧结), 然而未能显著增加氧空位的数量, 导致催化剂积碳. 原位红外和程序升温表面反应进一步揭示了该催化剂的反应机理: CO2在Ov上被吸附活化, 生成活性氧物种(O*), 这些活性O*物种与在Ni位点上CH4裂解生成的CHx*中间体反应, 生成CO和H2.

综上, 本研究通过MgO辅助界面工程策略, 成功构建了兼具丰富氧空位与Ni/MgNiO2界面的镍基催化剂. 该催化剂在低温甲烷干重整反应中展现出优异的抗积碳性能和高稳定性, 为高效稳定的DRM催化剂的设计提供了新的思路和策略.

关键词: 甲烷干重整, 镍基催化剂, 无积碳, 氧空位, 界面工程

Abstract:

In the past decade, dry reforming of methane (DRM) has garnered increasing interest as it converts CH4 and CO2, two typical greenhouse gases, into synthesis gas (H2 and CO) for the production of high-value-added chemicals and fuels. Nickel-based DRM catalysts, renowned for their high activity and low cost, however, encounter challenges such as severe deactivation from sintering and carbon deposition. Herein, a surrounded NiO@NiAlO precursor derived from Ni(OH)2 nanosheets was modified at both the core and shell interfaces with MgO via wet impregnation. The obtained 0.8MgOWI/Ni@NiAlO catalyst achieved a high CH4 reaction rate of ~177 mmol gNi-1 min-1 and remained stable for 50 h at 600 °C without coke formation. In sharp contrast, other Mg-doped catalysts (MgO modified the core or shell interfaces) and the catalyst without Mg-doping deactivated within 10 h due to coking or Ni particle sintering. The Ni/MgNiO2 interfaces and abundant oxygen vacancies (Ov) generated by Mg-doping contributed to the outstanding resistance to sintering & coking as well as the superior activity and stability of the 0.8MgOWI/Ni@NiAlO catalyst. In-situ investigation further unveiled the reaction mechanism: the activation of CO2 via adsorption on Ov generates active oxygen species (O*), which reacts with CHx* intermediates formed by the dissociation of CH4 on Ni sites, yielding CO and H2. This work not only fabricates coke-free and high-stability Ni-based DRM catalysts via interface engineering but also provides insights and a new strategy for the design of high-efficiency and stable catalysts for DRM.

Key words: Dry reforming of methane, Ni-based catalyst, Coke-free, Oxygen vacancy, Interface engineering