催化学报 ›› 2025, Vol. 78: 25-46.DOI: 10.1016/S1872-2067(25)64798-X
苏文韬a,b, 田胜龙a, 杨华美a,c, 李昌志a,b,*(), 张涛a,b
收稿日期:
2025-05-10
接受日期:
2025-06-18
出版日期:
2025-11-18
发布日期:
2025-10-14
通讯作者:
*电子信箱: licz@dicp.ac.cn (李昌志).
基金资助:
Wentao Sua,b, Shenglong Tiana, Huamei Yanga,c, Changzhi Lia,b,*(), Tao Zhanga,b
Received:
2025-05-10
Accepted:
2025-06-18
Online:
2025-11-18
Published:
2025-10-14
Contact:
*E-mail: licz@dicp.ac.cn (C. Li).
About author:
Changzhi Li (Dalian Institute of Chemical Physics, Chinese Academy of Science) was invited as a young member of the 5th and 6th Editorial Board of Chin. J. Catal. Prof. Changzhi Li received his B.A. degree from Hunan Normal University (P. R. China) in 2002, and Ph.D. degree from Dalian Institute of Chemical Physics, Chinese Academy of Sciences in 2009. Then he has been working in CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, where he was promoted to a full professor in 2019. The overarching theme of his research program is biomass catalytic conversion, especially the catalytic valorisation of lignin into value-added chemicals and high-density fuels. He has published over 90 peer-reviewed papers on international journals, and has been authorized more than 50 patents in China.
Supported by:
摘要:
木质素作为自然界中储量最丰富的可再生芳香化合物资源, 是由苯丙烷单元(如紫丁香基、愈创木基和对羟基苯基)通过C-O和C-C键(如β-O-4和4-O-5等)交联而成的三维无定形聚合物. 然而, 因其结构复杂性和化学惰性, 目前大部分木质素只能被低值化利用. 芳香含氮杂环化合物是医药、农药和功能材料的重要骨架, 当前其合成高度依赖于不可再生的化石原料, 且反应路线为多步反应过程, 存在原子经济性低、环境污染等问题. 木质素因其固有的芳香骨架和丰富的含氧官能团(如羟基、羰基), 为绿色合成芳香含氮杂环化合物提供了新机遇. 开发基于木质素的可持续合成路线, 不仅可降低碳足迹、拓展生物基化学品多样性, 而且对提升生物炼制经济性和推动医药化工产业的绿色升级具有重要意义.
本文综述了木质素制备芳香含氮杂环化合物的研究进展. 系统介绍了从木质素、木质素衍生单体或模型化合物出发, 经过一步或多步反应构建五元、六元、七元芳香含氮杂环化合物的最新成果. 针对木质素的结构特点, 深入讨论了木质素侧链烷基以及芳环骨架在构建杂环化合物中潜在反应位点与反应类型. 针对催化过程中C-O、C-C键断裂与C-N键形成的兼容性问题及含氮杂环构建所面临的挑战, 结合催化机理和反应路径分析, 全面总结了该系列转化中路线设计思路和催化体系的构建策略. 由于木质素分子结构的复杂性, 其转化过程普遍面临选择性偏低的难题, 因此, 当前成果多局限于木质素解聚单体和模型化合物转化. 为了推进该技术的工业化应用, 尚需革新生物质预处理技术, 最大限度地保留木质素中β-O-4键等关键活性连接键; 设计高效反应路线和多功能催化剂, 突破木质素原料定向转化的瓶颈; 建立绿色分离纯化系统, 解决复杂产物体系中目标组分的高效分离与纯化问题; 拓展下游产品高值化应用出口, 构建"预处理-催化-分离-应用"全链条创新体系, 形成从基础研究到产业应用的完整技术链条. 上述突破将显著提升木质素资源化利用的经济性和可持续性.
综上, 本文系统地总结了木质素转化为高附加值芳香含氮杂环化合物的新进展, 归纳讨论了反应路线、反应位点、催化机理和产物类别, 展望了未来研究方向及所面临的关键科学问题和技术瓶颈. 本文不仅为木质素转化合成芳香含氮杂环的相关研究提供了有益的参考, 更为解决生物质高值化利用过程中所面临的共性问题提供了启发和借鉴.
苏文韬, 田胜龙, 杨华美, 李昌志, 张涛. 木质素精炼制芳香含氮杂环化合物: 高值化学品可持续生产新机遇[J]. 催化学报, 2025, 78: 25-46.
Wentao Su, Shenglong Tian, Huamei Yang, Changzhi Li, Tao Zhang. Refining lignin into aromatic nitrogen-heterocyclic compounds: Sustainable avenue toward value-added chemicals[J]. Chinese Journal of Catalysis, 2025, 78: 25-46.
Fig. 2. (a) Palladium-catalyzed formal cross-coupling between monophenols and pyrrolidines/indolines to give several N-cyclohexyl-substituted pyrrole or indole products. Reprinted with permission from Ref. [55]. Copyright 2017, Royal Society of Chemistry. (b) The reaction mechanism. Reprinted with permission from Ref. [55]. Copyright 2018, Wiley-VCH.
Fig. 3. Sequence reaction of carbazole synthesis from phenol in heterogeneous catalyst. Reprinted with permission from Ref. [65]. Copyright 2018, Springer Nature
Fig. 5. Synthesis of imidazopyridine from the β-O-4 model compound via copper-catalyzed oxidative cyclization. Reprinted with permission from Ref. [72]. Copyright 2017, American Chemical Society.
Fig. 6. Synthesis of imidazopyridine derivatives from lignin β-O-4 segments via a one-pot multicomponent reaction. Reprinted with permission from Ref. [73]. Copyright 2023, Cell Press.
Fig. 7. DDQ-catalyzed construction of imidazole derivatives from the lignin β-O-4 model compound and o-phenylenediamine, and the possible reaction mechanism. Reprinted with permission from Ref. [75]. Copyright 2022, Wiley-VCH.
Fig. 8. Formation of isoxazole and nitrile derivatives through hydroxylamine participation in lignin depolymerization. Reprinted with permission from Ref. [79]. Copyright 2018, American Chemical Society.
Fig. 9. Vanadium-complex catalyzed tandem reaction to construct diverse triazole derived from lignin model compound. Reprinted with permission from Ref. [83]. Copyright 2024, Wiley-VCH.
Fig. 10. DEA-based lignocellulose fractionation for the valorization of carbohydrate and lignin. Reprinted with permission from Ref. [96]. Copyright 2024, Springer Nature.
Fig. 12. Sequence reaction of quinoline and acridine synthesis from phenol in heterogeneous catalyst. Reprinted with permission from Ref. [65]. Copyright 2018, Springer Nature
Fig. 13. Integration of multiple reactions for acridine synthesis from phenols. Reprinted with permission from Ref. [106]. Copyright 2024, Royal Society of Chemistry.
Fig. 14. [Ir]- and [Cr]-complex-catalyzed synthesis of 3-oxo quinoline derivatives from the β-O-4 model compound. Reprinted with permission from Ref. [107]. Copyright 2023, American Chemical Society. Reprinted with permission from Ref. [108]. Copyright 2024, Royal Society of Chemistry.
Fig. 15. Direct synthesis of quinoline derivatives from β-O-4 model compounds without transition metals. Reprinted with permission from Ref. [109]. Copyright 2022, Wiley-VCH.
Fig. 16. Coordination-mediated Co-Cu dual single-atom catalysts for the cascade transformation of the β-O-4 model compound to quinoline. Reprinted with permission from Ref. [110]. Copyright 2024, Wiley-Blackwell.
Fig. 17. Clean synthesis strategy for generating biologically active isoquinoline molecules from lignin. Reprinted with permission from Ref. [115]. Copyright 2024, Wiley-VCH.
Fig. 18. Sustainable route for the synthesis of bio-based pyridazine-based compounds from guaiacol. Reprinted with permission from Ref. [119]. Copyright 2019, Springer Nature.
Fig. 19. One-pot synthesis of phenazine from lignin depolymerization-derived catechol and ammonia solution, and the main reaction processes. Reprinted with permission from Ref. [127]. Copyright 2022, Royal Society of Chemistry.
Fig. 20. KOH-mediated one-pot highly coupled reaction pathway for quinoxaline synthesis. Reprinted with permission from Ref. [128]. Copyright 2022, Wiley-VCH.
Fig. 21. Synthesis of pyrimidine-like compounds from lignin β-O-4 model compounds without transition-metal catalysts. Reprinted with permission from Ref. [131]. Copyright 2022, Springer Nature.
Fig. 22. Direct construction of N-aryl substituted pyrrolidine via Pd/C-catalyzed coupling of aryl ethers and pyrrolidines without additives. Reprinted with permission from Ref. [134]. Copyright 2021, Royal Society of Chemistry.
Fig. 23. Transformation of lignin via a three-step approach for the synthesis of heptacyclic N-heterocyclic compounds. Reprinted with permission from Ref. [138]. Copyright 2019, American Chemical Society.
|
[1] | 李立霞, 李修奇, 李飞跃, 甄翔, 董明东, 龙金星, 王晓兵, 江智勇. 三重态烷基蒽醌在模拟自然条件下实现木质素O-H键的位点选择性光活化[J]. 催化学报, 2025, 76(9): 65-80. |
[2] | 曹家铭, 刘玉庭, 刘慧芳, 刘春光, 时君友, 李宁. 多金属氧酸盐/乙酸协同氧化强化木质素高效解聚[J]. 催化学报, 2025, 74(7): 352-364. |
[3] | 王鑫颖, 田庆, 陈耀, 李爱朋, 张连兵, 张明明, 李昌志, 费强. 天然酶-纳米酶仿生杂合体系促进木质素高效解聚[J]. 催化学报, 2025, 72(5): 84-94. |
[4] | 郭芷若, 刘晓晖, 郭勇, 王艳芹. 多功能Pt-Nb/MOR催化剂上C-C裂解促进木质素转化为单体环烷烃[J]. 催化学报, 2025, 71(4): 285-296. |
[5] | 王毅同, 张超锋, 蔡诚, 黄曹兴, 沈晓骏, 楼宏铭, 胡常伟, 潘学军, 王峰, 谢君. 胡敏素形成机理、抑制策略和增值应用方面的研究进展[J]. 催化学报, 2025, 71(4): 25-53. |
[6] | 董琳, 方志强, 袁乾博, 樊勇, 杨勇, 王平, 盛时雄, 王艳芹, 陈祖鹏. 利用甲醛稳定剂和木质素中甲氧基从木质素选择性制备高碳数芳烃[J]. 催化学报, 2025, 68(1): 356-365. |
[7] | 杨艳玲, 韩沛杰, 张元宝, 林敬东, 万绍隆, 王勇, 刘海超, 王帅. 用于间甲酚高效加氢脱氧制芳烃的负载型W2C纳米催化剂的活性位研究[J]. 催化学报, 2024, 67(12): 91-101. |
[8] | 桂清文, 滕帆, 喻鹏, 吴一帆, 农志彬, 杨龙汐, 陈祥, 阳天宝, 何卫民. 可见光诱导Z型V2O5/g-C3N4异质结催化未活化烯烃串联反应[J]. 催化学报, 2023, 44(1): 111-116. |
[9] | 范亿薇, 李赫龙, 苏世浩, 陈金磊, 刘春泉, 王水众, 徐向亚, 宋国勇. 钌碳耦合碱还原催化降解三倍体毛白杨[J]. 催化学报, 2022, 43(3): 802-810. |
[10] | 陈锦杨, 吴红谕, 桂清文, 晏山舒, 邓婕, 林英武, 曹忠, 何卫民. 电催化4-喹诺酮和二烃基二硒醚的交叉脱氢偶联反应[J]. 催化学报, 2021, 42(9): 1445-1450. |
[11] | 杨辰昕, 陈鹤南, 彭焘, 梁柏耀, 张云, 赵伟. 电催化木质素升级转化成高附加值化学品和燃料的研究进展[J]. 催化学报, 2021, 42(11): 1831-1842. |
[12] | 马迪, 陆圣璐, 刘晓晖, 郭勇, 王艳芹. 木质素在不同Ru/Nb基催化剂上解聚和脱氧加氢制芳烃化合物[J]. 催化学报, 2019, 40(4): 609-617. |
[13] | 张佳光, Loris Lombardoa, Gökalp Gözaydın, Paul J. Dyson, 颜宁. 催化一步转化木质素单体为苯酚:建立木质素到高附加值化学品的通道[J]. 催化学报, 2018, 39(9): 1445-1452. |
[14] | 曹洪恩, 朱柏燃, 杨钰帆, 徐林, 俞磊, 徐清. 环己烯可控选择性催化氧化的最新进展[J]. 催化学报, 2018, 39(5): 899-907. |
[15] | 张超锋, 王峰. 声东击西:针对木质素β-O-4连接结构裂解的邻近基团转化策略[J]. 催化学报, 2017, 38(7): 1102-1107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||